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Problem 1

(a) We have to establish that K(x,y) = K(y,x), which follows from

K(x,y) = αx21y
2
1 + βx22y

2
2

= αy21x
2
1 + βy22x

2
2

= K(y,x), for all x,y ∈ R2.

(b) Let ε > 0 and x,y ∈ R2. We have to show that there exists a δ = δ(ε,x,y) > 0
such that if u,v ∈ R2 satisfy ∥∥∥∥(xy

)
−
(
u
v

)∥∥∥∥
2

< δ, (1)

then |K(x,y)−K(u,v)| < ε. Since

|K(x,y)−K(u,v)| =
∣∣αx21y21 + βx22y

2
2 − αu21v21 − βu22v22

∣∣
≤ α

∣∣x21y21 − u21v21∣∣+ β
∣∣x22y22 − u22v22∣∣,

it is sufficient to choose δ > 0 such that∣∣x21y21 − u21v21∣∣ < ε

2α

and ∣∣x22y22 − u22v22∣∣ < ε

2β
.

Suppose that (1) holds. This implies that

|x1 − u1| < δ, |y1 − v1| < δ, |x2 − u2| < δ, and |y2 − v2| < δ.

It now follows that∣∣x21y21 − u21v21∣∣ =
∣∣x21y21 − x21v21 + x21v

2
1 − u21v21

∣∣
≤ x21

∣∣y21 − v21∣∣+ v21
∣∣x21 − u21∣∣

= x21|(y1 + v1)(y1 − v1)|+ v21|(x1 + u1)(x1 − u1)|
≤ x21(|y1|+ |v1|)δ + v21(|x1|+ |u1|)δ
≤
(
x21(2|y1|+ δ) + (|y1|+ δ)2(2|x1|+ δ)

)
δ

<
ε

2α

1



provided that δ < C1 with

C1 = min

{
1,

ε

2α(x21(2
∣∣y1∣∣+ 1) + (

∣∣y1∣∣+ 1)2(2
∣∣x1∣∣+ 1))

}
.

Swapping the roles of x1 and x2, y1 and y2, u1 and u2, v1 and v2, and α and β and
using the same line of arguments yields∣∣x22y22 − u22v22∣∣ < ε

2β

provided that δ < C2 with

C2 = min

{
1,

ε

2β(x22(2
∣∣y2∣∣+ 1) + (

∣∣y2∣∣+ 1)2(2
∣∣x2∣∣+ 1))

}
.

We conclude that if δ < min{C1, C2}, then∥∥∥∥(xy
)
−
(
u
v

)∥∥∥∥
2

< δ

implies |K(x,y)−K(u,v)| < ε, which establishes continuity of K(x,y).

(c) We have to show that for every k ∈ N and x1, . . . ,xk ∈ R2, the k × k Gramian
matrix

K(x1, . . . ,xk) =


K(x1,x1) K(x1,x2) . . . K(x1,xk)
K(x2,x1) K(x2,x2) . . . K(x2,xk)

...
... . . .

...
K(xk,x1) K(xk,x2) . . . K(xk,xk)


is positive semidefinite. To this end, consider the mapping Φ: R2 → R2 defined
as

Φ(x) =

(√
αx21√
βx22

)
and note thatK(x,y) = ΦT(x)Φ(y). It follows that, for every k ∈ N and x1, . . . ,xk ∈
R2, we have

cTK(x1, . . . ,xk) c =
k∑

i,j=1

cicjK(xi,xj)

=
k∑

i,j=1

cicjΦ
T(xi)Φ(xj)

=

(
k∑

i=1

ciΦ(xi)

)T( k∑
j=1

cjΦ(xj)

)
≥ 0, for all c = (c1 . . . ck)T ∈ Rk,

which proves that K(x,y) is positive semidefinite.
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(d) For every y ∈ R2, we define the function Ky : R2 → R according to Ky(x) =
K(x,y) and set

H0 = span{Ky : y ∈ R2}.

Let e1 = (1 0)T and e2 = (0 1)T with corresponding

Ke1(x) = K(e1,x) = αx21

and

Ke2(x) = K(e2,x) = βx22,

respectively. Since

Ka(x) = αx21a
2
1 + βx22a

2
2

= a21Ke1(x) + a22Ke2(x), for all a =

(
a1
a2

)
∈ R2,

it follows that H0 = span{Ke1 , Ke2}. We conclude that the reproducing kernel
Hilbert spaceHK corresponding to the kernel K(x,y) is given by

HK = H0 = span{Ke1 , Ke2} = span{Ke1 , Ke2}.

(e) Consider Ke1 and Ke2 from subproblem (d). Using the reproducing property of
HK , we have

〈Ke1 , Ke1〉HK
= K(e1, e1) = α,

〈Ke2 , Ke2〉HK
= K(e2, e2) = β,

and

〈Ke1 , Ke2〉HK
= K(e1, e2) = 0.

This implies that {Ke1/
√
α,Ke2/

√
β} is an orthonormal basis for the reproducing

kernel Hilbert spaceHK = span{Ke1 , Ke2} corresponding to the kernel K(x,y).

Problem 2

(a) The following figure depicts {x1,x2} (red points) and {x3,x4} (blue points) to-
gether with a separating straight line (thick black line):
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(b) The Lagrange function L(w, b, c) id given by

L(w, b, c) =
1

2
‖w‖22 +

4∑
i=1

ci(1− yi(〈w,xi〉2 − b)). (2)

(c) Setting∇wL(w, b, c) = 0 and ∇bL(w, b, c) = 0 yields

w =
4∑

i=1

ciyixi (3)

and
4∑

i=1

ciyi = 0, (4)

respectively. Using (3) and (4) in (2) results in

g(c) = min
w∈R2,b∈R

L(w, b, c)

=
4∑

i=1

ci −
1

2

4∑
i,j=1

ciyicjyj〈xi,xj〉2

= aTc− 1

2
cTAc

with a = (1 1 1 1)T and

A =


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

 .

(d) It follows from subproblem (c) that the Lagrange dual function g(c) can be writ-
ten as

g(c) = c1 + c2 + c3 + c4 −
1

2
(c22 + c23 + 2c2c3 + c24).
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Using the constraint

4∑
i=1

ciyi = c1 + c2 − c3 − c4 = 0, (5)

we can write

g(c) = 2(c3 + c4)−
1

2
(c23 + c24)−

1

2
(c22 + 2c2c3).

It follows that

g(c) ≤ 2(c3 + c4)−
1

2
(c23 + c24)

≤ 4

with equalities in both steps for c̃2 = 0 and c̃3 = c̃4 = 2. Using (5) again, we get
c̃1 = c̃3 + c̃4 − c̃2 = 4. The solution of the Lagrange dual problem is therefore
given by c̃ = (4 0 2 2)T. A vector xi is a support vector if and only if the
corresponding c̃i is strictly positive. The support vectors are therefore given by
{x1,x3,x4}.

(e) Using (3) and the solution c̃ = (4 0 2 2)T from subproblem (d), we obtain the
following solution w̃ of the optimization problem in subproblem (b):

w̃ = 4x1 − 2x3 − 2x4 = −2

(
1
1

)
.

The solution b̃ can be obtained from

b̃ = 〈w̃,x1〉2 − y1
= −1,

which follows from the fact that for the support vector x1 we have c̃1 > 0 and,
therefore, the corresponding inequality constraint y1(〈w̃,x1〉2 − b̃) ≥ 1 must be
satisfied with equality. The hard margin binary classifier ghm(x) therefore has the
following form:

ghm(x) = (〈w̃,x〉2 − b̃)
= −2

(
1 1

)
x + 1.
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Problem 3

(a) The following figure depicts f(x).
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(b) Denote the ReLU function as ρ(x) = max{0, x}. The function f(x) can be realized
as a linear combination of shifted ReLU functions according to

f(x) = ρ(4x)− ρ(4x− 1)− ρ(4x− 3) + ρ(4x− 4).

This function can be realized through a depth-2 ReLU network according to

Φ(x) = W2(ρ(W1(x)))

with

W1(x) =


4
4
4
4

x+


0
−1
−3
−4

 , W2(x) =
(
1 −1 −1 1

)
x1
x2
x3
x4

 .

The network Φ has depth 2, width 4, and connectivity 11.

(c) One way to realize h(x) through a ReLU-network is according to

h(x) = f(4x) + f(4x− 3) = ρ(16x)− ρ(16x− 1)− ρ(16x− 3) + ρ(16x− 4)

+ ρ(16x− 12)− ρ(16x− 13)− ρ(16x− 15) + ρ(16x− 16).

This corresponds to the depth-2 ReLU-network

Φ1(x) = W2(ρ(W1(x)))

with

W1(x) =



16
16
16
16
16
16
16
16


x+



0
−1
−3
−4
−12
−13
−15
−16


, W2(x) =

(
1 −1 −1 1 1 −1 −1 1

)


x1
x2
x3
x4
x5
x6
x7
x8


.

The network Φ1 has depth 2, width 8, and connectivity 23.
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(d) An alternative way to realize h(x) is to note that h(x) = f(f(x)). The function
f(x) is realized through the network Φ(x) = W2(ρ(W1(x))) in subproblem (b),
therefore h(x) = f(f(x)) can be realized through the network

Φ2(x) = Φ(Φ(x)) = W2(ρ(W1(W2(ρ(W1(x)))))) = W ′
3(ρ(W ′

2(ρ(W ′
1(x)))))

with

W ′
1(x) = W1(x) =


4
4
4
4

x+


0
−1
−3
−4

 , W ′
3(x) = W2(x) =

(
1 −1 −1 1

)
x1
x2
x3
x4

 ,

W ′
2(x) = W1(W2(x)) =


4
4
4
4

(1 −1 −1 1
)

x1
x2
x3
x4

+


0
−1
−3
−4



=


4 −4 −4 4
4 −4 −4 4
4 −4 −4 4
4 −4 −4 4



x1
x2
x3
x4

+


0
−1
−3
−4

 .

The network Φ2 has depth 3, width 4, and connectivity 30.
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Problem 4

(a) An ε-covering of the compact set C ⊆ X with respect to the metric ρ is a set
{x1, . . . , xN} ⊂ C such that for each x ∈ C, there exists an i ∈ [1, N ] such that
ρ(x, xi) ≤ ε. The ε-covering number N(ε; C, ρ) is the cardinality of the smallest
ε-covering.

An ε-packing of a compact set C ⊆ X with respect to the metric ρ is a set
{x1, . . . , xN} ⊂ C such that ρ(xi, xj) > ε, for all distinct i, j. The ε-packing number
M(ε; C, ρ) is the cardinality of the largest ε-packing.

(b) Let {x1, . . . , xN} be an ε-packing of C. The `2-balls centered at the xi and of ra-
dius ε/2 are referred to as packing balls. As the distance between each pair in
the packing is at least ε, the packing balls are mutually disjoint. Therefore, the
maximum volume covered by the packing balls is M(ε; C, ‖ · ‖2) c(ε/2)d, where c
is a constant. Since each point in the packing must be in C, all the packing balls
are, indeed, contained in an `2-ball of radius 1 + ε/2. Hence, we get, for all ε ≤ 2,

M(ε; C, ‖ · ‖2) c (ε/2)d ≤ c (1 + ε/2)d =⇒M(ε; C, ‖ · ‖2) ≤
(2

ε
+ 1
)d
≤
(4

ε

)d
.
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