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Problem 1

(a) We have to establish that K (x,y) = K(y, x), which follows from

K(:c y) = Oéx1y1 + 6$2?J2
= aylxl + 5925’72
= K(y,x), forallz,yc R%

(b) Lete > 0 and x,y € R% We have to show that there exists a § = d(¢,x,y) > 0
such that if u, v € R? satisfy
z\ (u
Y v

then |K(x,y) — K(u,v)| < . Since

<4, (1)

2

|K(x,y) — K(u,v)| = ‘amlyl + Broys — auivy — 5u§v§}
< alaty} — uivi| + Bladys — uvi),
it is sufficient to choose § > 0 such that
‘Il?h - Uﬂ’l’ < -
and

‘%yz - U2U2| <

2B'
Suppose that (1) holds. This implies that

v —uy| <6, |yr —v1| <9, |ra—us| <, and |yo —wvy| <.
It now follows that

|x1y1 ulvl‘ = |x1y1 xlvl +$1“1 ulvl‘
< xﬂ% | +U1}$1 ’
= 2¥|(y1 +o1) (g1 — o) + of] (@1 + ) (21— w)]
< 2{(|yi| + [i])8 + i (|| + [wa])d

< (23 (2lwn] +8) + (Jys| + 6)* (21| +6)) 6
15

<_
2a



provided that § < C; with

€
C7 = ming 1, )
{ 200232l | + 1) + (Jon| + 1)2(2|a1 | + 1))}
Swapping the roles of z; and x5, y; and ys, u; and uy, v; and v,, and o and 3 and
using the same line of arguments yields
£
|w5y5 —u3vs| < o5

28
provided that 6 < C; with

€
C5 = ming 1, ,
i { 28(a3(2Jys] + 1) + (2] + 1)2(2] 2] +1>>}
We conclude that if 6 < min{C}, Cs}, then

1))

implies |K(z,y) — K(u,v)| < ¢, which establishes continuity of K (x, y).

<
2

We have to show that for every k € N and 1, ..., z; € R? the k x k Gramian
matrix

K(wl,wl) K(wl,wz) K(zcl,a:k)

K(xe, 1) K(xo,x3) ... K(xo,xk)
K(mlv 7$k’) = . . .

K(xp, x1) K(xg,x2) ... K(xkK, X))

is positive semidefinite. To this end, consider the mapping ®: R? — R? defined

as
o = (Vo)

and note that K (z,y) = ®T(x)®(y). It follows that, forevery k € Nand x4, ..., x; €
R2, we have

which proves that K (x, y) is positive semidefinite.
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(d)

(e)

For every y € R?, we define the function K,: R? — R according to K,(x) =
K(x,y) and set

Ho = span{K,, : y € R?}.
Lete; = (1 0)T and e, = (0 1)T with corresponding
K., (x) = K(e, ) = ax?
and
Key(x) = K(es, @) = B3,
respectively. Since
K.(x) = aria] + Brias

= aiKe,(x) + a3 K, (x), foralla = (Z;) € R?,

it follows that H, = span{K,,, K,}. We conclude that the reproducing kernel
Hilbert space H x corresponding to the kernel K (x, y) is given by

Hi = Ho = span{K,,, Ke,} = span{K,,, Ko, }.

Consider K., and K., from subproblem (d). Using the reproducing property of
Hy, we have

<K81a K61>HK = K(ela 61) = Q,

<Ke2’ Ke2>'HK = K(62a 62) =0,

and

<K€17K€2>HK = K(ela 62) = 0.

This implies that { K, /v/a, Ke,/+/B} is an orthonormal basis for the reproducing
kernel Hilbert space Hx = span{ K, , K, } corresponding to the kernel K (zx, y).

Problem 2

(a)

The following figure depicts {x, x>} (red points) and {x3, x4} (blue points) to-
gether with a separating straight line (thick black line):
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(b) The Lagrange function L(w, b, c) id given by

4

Liw,b,e) = g wl3+ 3" el — ul(w,z.)s — b)),

i=1

(c) Setting V., L(w,b,c) = 0and V,L(w,b, c) = 0 yields
and

respectively. Using (3) and (4) in (2) results in

= min L(w,b
g(c) wolin_ (w,b,c)

4 1 4
= ;Ci 3 Z CiYiCiy; (T Tj)o

ij=1
1
=a'c— §CTA c

witha= (111 1)T and

o O OO
O = = O
O = = O
_ o O O

(2)

(3)

(4)

(d) It follows from subproblem (c) that the Lagrange dual function g(c) can be writ-

ten as

1
gle)=c1+ca+cgtcy— 5(6% + ¢35 + 2c903 + €5).



(e)

Using the constraint

4
Zciyizcl+c2_03_c4:0> 5)

=1

we can write
1 1
g(C) = 2(03 + C4) - 5(03 + Ci) — 5(03 + 20203).
It follows that

1
g(e) <2(cz+cq) — §(C§ +c3)
4

IN

with equalities in both steps for ¢; = 0 and ¢; = ¢4, = 2. Using (5) again, we get
¢y = C3 + ¢4 — ¢ = 4. The solution of the Lagrange dual problem is therefore
givenby ¢ = (4 0 2 2)T. A vector x; is a support vector if and only if the
corresponding ¢; is strictly positive. The support vectors are therefore given by
{331, I3, 334}.

Using (3) and the solution ¢ = (4 0 2 2)T from subproblem (d), we obtain the
following solution w of the optimization problem in subproblem (b):

1;)—43’51—2.’1}3—2534——2(1)

The solution b can be obtained from
[; = <’IIJ, 331>2 — U
— —1’
which follows from the fact that for the support vector x; we halve ¢; > 0 and,
therefore, the corresponding inequality constraint y; ((w,x1)2 — b) > 1 must be
satisfied with equality. The hard margin binary classifier gnm(x) therefore has the
following form:
ghm(®) = (@, )2 — )
=-2(1 Ha+1



Problem 3

(a) The following figure depicts f(z).

(b)
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Denote the ReLU function as p(z) = max{0, z}. The function f(x) can be realized
as a linear combination of shifted ReLU functions according to

f(z) = pdz) — p(4x — 1) — p(4x — 3) + p(dz — 4).
This function can be realized through a depth-2 ReLU network according to
O(x) = Wap(Wi(2)))

with
4 0 xy
W@ = | et | L m@ =0 -1 -1 1)|™
4 -3\’ I3
4 —4 Ty

The network ® has depth 2, width 4, and connectivity 11.

One way to realize h(z) through a ReLU-network is according to
h(z) = f(4z) + f(4x — 3) = p(162) — p(16x — 1) — p(16x — 3) + p(16x — 4)
+ p(162 — 12) — p(162 — 13) — p(162 — 15) + p(162 — 16).
This corresponds to the depth-2 ReLU-network
®1(z) = Wa(p(Wi(2)))

with
16 0 1
16 -1 s
16 -3 3
16 —4

Wiz)= | o |o+ ]| o] Wel@=( -1 -1 11 -1 -1 1) i‘;
16 —13 Tg
16 —15 Ty
16 —16 I

The network ®, has depth 2, width 8, and connectivity 23.
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(d) An alternative way to realize i(x) is to note that h(z) = f(f(z)). The function
f(z) is realized through the network ®(z) = W(p(Wi(z))) in subproblem (b),
therefore h(x) = f(f(z)) can be realized through the network

Py(2) = O(P(x)) = Wa(p(Wi(Wa(p(Wi(2)))))) = Wi(p(W5(p(Wi(2)))))
with

4 0 Z1
/ 4 -1 / o)
4 —4 Tq
4 T 0
4 -1
Wi(x) = Wi(Wa(z) = |, | (1 =1 =1 1) ij +| 5
4 T4 —4
4 —4 —4 4 1 0
4 -4 -4 4 2N -1
|4 -4 —4 4 T3 -3
4 —4 —4 4 Ty —4

The network @, has depth 3, width 4, and connectivity 30.



Problem 4

(a)

(b)

An e-covering of the compact set C C & with respect to the metric p is a set
{z1,...,2zy} C C such that for each = € C, there exists an i € [1, N| such that
p(z,z;) < e. The e-covering number N(¢;C, p) is the cardinality of the smallest
e-covering.

An e-packing of a compact set C C A’ with respect to the metric p is a set
{z1,...,2n} C Csuch that p(z;, z;) > ¢, for all distinct 7, j. The e-packing number
M(e; C, p) is the cardinality of the largest e-packing.

Let {z1,...,zn} be an e-packing of C. The /,-balls centered at the z; and of ra-
dius €/2 are referred to as packing balls. As the distance between each pair in
the packing is at least ¢, the packing balls are mutually disjoint. Therefore, the
maximum volume covered by the packing balls is M (¢;C, || - ||2) c(e/2)?, where ¢
is a constant. Since each point in the packing must be in C, all the packing balls
are, indeed, contained in an ¢»-ball of radius 1 + ¢/2. Hence, we get, for all ¢ < 2,

MG by e (/2 < e (14 ef2) = MeC, ]Iy < (F+1) < (2)

€



