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Problem 1

(a) By definition we have

gBn+1(x) =

∫ 1
2

− 1
2

gBn(x− tbn+1) dt.

This yields

ĝBn+1(ξ) =

∫
Rn

gBn+1(x)e−iξ
Tx dx

=

∫ 1
2

− 1
2

(∫
Rn

gBn(x− tbn+1)e
−iξTx dx

)
dt

=

∫ 1
2

− 1
2

(∫
Rn

|det(Bn)|gBn(Bnz)e−iξ
T(Bnz+tbn+1) dz

)
dt (1)

=

∫ 1
2

− 1
2

e−iξ
Tbn+1t dt

n∏
i=1

∫ 1
2

− 1
2

e−iξ
Tbizidzi, (2)

where in (1) we changed variables to z = B−1n (x − tbn+1) and (2) follows from
the fact that

|det(Bn)|gBn(Bnz) =

1, if z ∈
[
− 1

2
, 1

2

]n
0, else.

As ∫ 1
2

− 1
2

e−iat dt =
2

a
sin
(a

2

)
, for all a > 0, (3)

we can conclude that

ĝBn+1(ξ) =
n+1∏
i=1

(
2

ξTbi
sin

(
ξTbi

2

))
.

(b) The result for q = n + 1 follows from subproblem (a). For general q > n, we
proceed by induction as follows. Suppose that the statement holds for q − 1, i.e.,

ĝBq−1(ξ) =

q−1∏
i=1

(
2

ξTbi
sin

(
ξTbi

2

))
. (4)
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By definition we have

gBq(x) =

∫ 1
2

− 1
2

gBq−1(x− tbq) dt.

This yields

ĝBq(ξ) =

∫
Rn

gBq(x)e−iξ
Tx dx

=

∫ 1
2

− 1
2

(∫
Rn

gBq−1(x− tbq)e−iξ
Tx dx

)
dt

=

∫ 1
2

− 1
2

(∫
Rn

gBq−1(z)e−iξ
T(z+tbq) dz

)
dt (5)

= ĝBq−1(ξ)

∫ 1
2

− 1
2

e−iξ
Tbqt dt

=

q∏
i=1

(
2

ξTbi
sin

(
ξTbi

2

))
, (6)

where in (5) we changed variables to z = x− tbq and (6) follows from (3) and (4).

(c) We first determine the Fourier transform f̂ ? g(ξ) of the convolution (f ? g)(x) for
two general functions f, g : Rn → R. Specifically, we have

f̂ ? g(ξ) =

∫
Rn

(∫
Rn

f(y)g(x− y)dy

)
e−iξ

Txdx

=

∫
Rn

(∫
Rn

g(x− y)e−iξ
Txdx

)
f(y)dy

=

∫
Rn

(∫
Rn

g(u)e−iξ
Tudu

)
f(y)e−iξ

Tydy (7)

= f̂(ξ)ĝ(ξ),

where in (7) we changed variables to u = x − y. Particularizing this result to
f = g = gBq yields

k̂(ξ) = gBq ? gBq̂ (ξ)

= (ĝBq)
2(ξ)

=

q∏
i=1

(
2

ξTbi
sin

(
ξTbi

2

))2

, (8)

where in (8) we used the explicit expression for ĝBq(ξ) obtained in subproblem
(b).

(d) We have to show that for every k ∈ N and all x1, . . . ,xk ∈ Rn, the k × k Gramian
matrix

K(x1, . . . ,xk) =


K(x1,x1) K(x1,x2) . . . K(x1,xk)
K(x2,x1) K(x2,x2) . . . K(x2,xk)

...
... . . .

...
K(xk,x1) K(xk,x2) . . . K(xk,xk)


2



is positive semidefinite. This is effected by noting that, for every k ∈ N, all
x1, . . . ,xk ∈ Rn, and all c = (c1 . . . cn)T ∈ Rn, we have

cTK(x1, . . . ,xk)c =
k∑

i,j=1

cicjK(xi,xj)

=
k∑

i,j=1

cicjk(xi − xj)

=
1

(2π)n

k∑
i,j=1

cicj

∫
k̂(ξ)eiξ

T(xi−xj)dξ

=
1

(2π)n

∫
k̂(ξ)

∣∣∣∣∣
k∑
i=1

cie
iξTxi

∣∣∣∣∣
2

dξ

≥ 0,

which, owing to k̂(ξ) ≥ 0, for all ξ ∈ Rn, proves that K is positive semidefinite.
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Problem 2

(a) The Lagrange function L(w, b, c) is given by

L(w, b, c) =
1

2
‖w‖22 +

3∑
i=1

ci(1− yi(〈w,xi〉2 − b)). (9)

(b) Setting∇wL(w, b, c) = 0 and ∇bL(w, b, c) = 0 yields

w =
3∑
i=1

ciyixi (10)

and
3∑
i=1

ciyi = 0, (11)

respectively. Using (10) and (11) in (9) results in

g(c) = min
w∈R2,b∈R

L(w, b, c)

=
3∑
i=1

ci −
1

2

3∑
i,j=1

ciyicjyj〈xi,xj〉2

= aTc− 1

2
cTAc

with a = (1 1 1)T and

A =

0 0 0
0 1 −λ
0 −λ 1 + λ2

 .

(c) It follows from subproblem (b) that the Lagrange dual function g(c) can be writ-
ten as

g(c) = c1 + c2 + c3 −
1

2
(c22 + (1 + λ2)c23 − 2λc2c3).

Since −g(c) is convex, we can, as mentioned in the hint, consider the Lagrange
function

L̃(c,µ, γ) = −g(c)− µTc+ γ(c1 + c2 − c3),

where µ = (µ1, µ2, µ3)
T ∈ R3 and γ ∈ R are Lagrange multipliers. The KKT

conditions now read as follows:

ci ≥ 0, for i = 1, 2, 3 (12)

c1 + c2 − c3 = 0, (13)

µi ≥ 0, for i = 1, 2, 3 (14)
ciµi = 0, for i = 1, 2, 3 (15)

∂L̃(c,µ, γ)

∂ci
= 0, for i = 1, 2, 3. (16)
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Evaluating the derivatives in (16) yields

−1− µ1 + γ = 0 (17)

−1 + c2 − λc3 − µ2 + γ = 0 (18)

−1 + (1 + λ2)c3 − λc2 − µ3 − γ = 0. (19)

Suppose first that λ ∈ (0, 1). The following figure depicts the separating straight
line between {x1,x2} and {x3} of largest possible margins for λ = 1/2:
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From the figure we can see that x1,x2, and x3 are all support vectors. We there-
fore make the ansatz ci > 0 for i = 1, 2, 3. Then, (15) implies that µ1 = µ2 = µ3 = 0.
Using this in (17)–(19) yields c2 = 2λ and c3 = 2. Finally, (13) implies that
c1 = 2− 2λ. We can therefore conclude that

c∗ = (2− 2λ 2λ 2)T

is a solution of the Lagrange dual problem for λ ∈ (0, 1).

Next, suppose that λ > 1. The following figure depicts the separating straight
line between {x1,x2} and {x3} of largest possible margins for λ = 2:
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From the figure we can see that now x2 and x3 are the support vectors. This leads
to the ansatz c2 > 0, c3 > 0, and c1 = 0. Then, (15) implies that µ2 = µ3 = 0 and
(13) yields c2 = c3. Using this in (17)–(19), we obtain

c2(λ− 1) = µ1

c2(1 + λ2 − λ) = µ1 + 2,

which yields

c2 =
2

2− 2λ+ λ2
.

We can therefore conclude that

c∗ =
2

2− 2λ+ λ2
(0 1 1)T

is a solution of the Lagrange dual problem for λ ≥ 1.

(d) By assumption we have λ ∈ (0, 1). Using (10) and c∗ = (2 − 2λ 2λ 2)T from
subproblem (c), we obtain the following solutionw∗ of the optimization problem
in subproblem (a):

w∗ = 2λx2 − 2x3 = −
(

2
0

)
.

The solution b∗ can be obtained as follows. Since c∗1 > 0, i.e., x1 is a support
vector, the corresponding inequality constraint y1(〈w̃,x1〉2 − b∗) ≥ 1 must be
satisfied with equality. This yields

b∗ = 〈w̃,x1〉2 − y1
= −1.

The hard margin binary classifier ghm(x) is therefore given by

ghm(x) = (〈w̃,x〉2 − b∗)
= −2

(
1 0

)
x+ 1.
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Problem 3

(a) Denote the ReLU function as ρ(x) = max{0, x}. The function f(x) can be realized
according to

f(x) = ρ(4x)− ρ(8x− 1.6) + ρ(14x− 5.6)− ρ(20x− 10) + ρ(14x− 8.4)

− ρ(8x− 6.4) + ρ(4x− 4).

This function can, in turn, be realized through a depth-2 ReLU network according
to

Φ(x) = W2(ρ(W1(x)))

with

W1(x) =



4
8
14
20
14
8
4


x+



0
−1.6
−5.6
−10
−8.4
−6.4
−4


, W2(x) =

(
1 −1 1 −1 1 −1 1

)


x1
x2
x3
x4
x5
x6
x7


.

The network Φ has depth 2, width 7, and connectivity 20.

(b) The following figure depicts f(g(x)). The axis of symmetry is at x = 0.5.
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(c) An alternative way to realize f(x) is obtained by first noting that f(x) is sym-
metric around x = 0.5 and can thus be written as f(x) = h(g(x)), where h(x) =
f(0.5x), for x ∈ [0, 1], and g(x) = ρ(2x)− ρ(4x− 2) + ρ(2x− 2) = W g

2 (ρ(W g
1 (x))) is

the sawtooth function from subproblem (b). Here,

W g
1 (x) =

2
4
2

x+

 0
−2
−2

 , W g
2 (x) =

(
1 −1 1

)x1x2
x3

 .
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The function h(x) = ρ(2x) − ρ(4x − 1.6) + ρ(7x − 5.6) = W2(ρ(W1(x))) satisfies
h(x) = f(0.5x), for x ∈ [0, 1]. Here,

W1(x) =

2
4
7

x+

 0
−1.6
−5.6

 , W2(x) =
(
1 −1 1

)x1x2
x3

 .

Therefore, f(x) = h(g(x)) can be realized through the network

Φ2(x) = W2(ρ(W1(W
g
2 (ρ(W g

1 (x)))))) = W ′
3(ρ(W ′

2(ρ(W ′
1(x)))))

with

W ′
1(x) = W g

1 (x) =

2
4
2

x+

 0
−2
−2

 , W ′
3(x) = W2(x) =

(
1 −1 1

)x1x2
x3

 ,

W ′
2(x) = W1(W

g
2 (x)) =

2
4
7

(1 −1 1
)x1x2

x3

+

 0
−1.6
−5.6


=

2 −2 2
4 −4 4
7 −7 7

x1x2
x3

+

 0
−1.6
−5.6

 .

The network Φ2 has depth 3, width 3, and connectivity 19.
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Problem 4

(a) (i) An ε-covering of the compact set C ⊆ X with respect to the metric ρ is a set
{x1, . . . , xN} ⊂ C such that for each x ∈ C, there exists an i ∈ [1, N ] so that
ρ(x, xi) ≤ ε. The ε-covering number N(ε; C, ρ) is the cardinality of a smallest
ε-covering of C.

(ii) An ε-packing of a compact set C ⊆ X with respect to the metric ρ is a set
{x1, . . . , xN} ⊂ C such that ρ(xi, xj) > ε, for all distinct i, j. The ε-packing
number M(ε; C, ρ) is the cardinality of a largest ε-packing of C.

(iii) N(2ε; C, ρ) ≤M(2ε; C, ρ) ≤ N(ε; C, ρ) ≤M(ε; C, ρ).

(b) (i) Let ε < 2−n be arbitrary but fixed, take K = log2(1/ε), and divide the
interval In := [−2−n, 2−n] into L := d2K−ne ≥ 2 sub-intervals of equal
length, centered at the points θi = −2−n + (2i−1)2−n

L
, for i ∈ {1, 2, . . . , L},

and each of length 21−n

L
≤ 21−K = 2ε. By construction, for every θ ∈ In,

there is hence a j ∈ {1, 2, . . . , L} such that |θ − θj| ≤ ε, which proves that
An(ε) = {θi; i ∈ {1, 2, . . . , L}} is an ε-covering.

(ii) For the construction of the 2ε-packing, take the points θ′i = −2−n + 2(i−1)2−n

L−1 ,
for i ∈ {1, 2, . . . , L}. As for every neighboring pair θ′i, θ′j ∈ In, it holds that
|θ′i − θ′j| = 21−n

L−1 > 2ε, we have established that Pn(ε) = {θ′i; i ∈ {1, 2, . . . , L}}
constitutes a 2ε-packing.We finally note that |Pn(ε)| = |An(ε)| = d2K−ne.

(iii) By (b.i) we have

N(ε; In, ρ1) ≤ |An(ε)| = d2K−ne

and by (b.ii),

M(2ε; In, ρ1) ≥ |Pn(ε)| = d2K−ne.

Combining this with M(2ε; C, ρ) ≤ N(ε; C, ρ) for every compact set C in the
metric space (X , ρ), yields N(ε; In, ρ1) = d2K−ne.

(c) (i) An ε-covering of C can be obtained by forming the Cartesian product, across
n ∈ N, of the ε-coverings of [−2−n, 2−n] according to A(ε) = {f : N →
R; f(n) ∈ An(ε),∀n ∈ N}, where, for ε < 2−n, An(ε) is the ε-covering of
[−2−n, 2−n] constructed in subproblem (b.i) and An(ε) = {0}, for ε ≥ 2−n.

(ii) Fix ε ≤ 1/2 and take K = log2(1/ε). By subproblems (b.iii) and (c.i), we have

N(ε; C, ρ2) ≤ |A(ε)| =
∞∏
n=1

|An(ε)| ≤
dKe−1∏
n=1

2dKe−n = 2(dKe−1)dKe/2

≤
(1

ε

)dKe/2
≤
(1

ε

) 1
2
log2(1/ε)+C

,

for some C > 0 that is independent of ε.
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