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Problem 1

(a) By definition we have
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where in (1) we changed variables to z = B, '(x — tb,,1) and (2) follows from

the fact that
1, ifze -2 4"
[det(B,,)|gp, (B,z) = .
0, else.
As
/; et dt = gsin(g) foralla > 0 (3)
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we can conclude that

0B, (&) = ﬁ (gfbi sin (&Zbi ) ) '
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(b) The result for ¢ = n + 1 follows from subproblem (a). For general ¢ > n, we
proceed by induction as follows. Suppose that the statement holds for ¢ — 1, i.e.,
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By definition we have
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where in (5) we changed variables to z = x — tb, and (6) follows from (3) and (4).
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(c) We first determine the Fourier transform f/a:](&) of the convolution (f x g)(x) for
two general functions f, g: R®™ — R. Specifically, we have
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where in (7) we changed variables to u = x — y. Particularizing this result to
f =g =g, yields
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where in (8) we used the explicit expression for jg, (&) obtained in subproblem

(b).
(d) We have to show that for every £ € Nand all z,...,z; € R”, the k x k Gramian

matrix
K(xy, 1) K(xi,25) ... K(x1,xk)
K(xe, 1) K(xo,x3) ... K(x9, k)
K(a:h 7mk) = . . .
K(xg,x1) K(xg,x2) ... K(xkK, 2)K)



is positive semidefinite. This is effected by noting that, for every k£ € N, all

xi,...,z, €R" andalle = (c;...c,)"T € R", we have
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which, owing to k(&) > 0, for all & € R”, proves that K is positive semidefinite.



Problem 2

(a) The Lagrange function L(w, b, ¢) is given by
L(w, b, c) —Hw\|2+2q (w, x;)s — b)). 9)

(b) Setting V,,L(w,b,c) = 0and V,L(w, b, c) = 0 yields

3
w = Z CiYi; (10)
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respectively. Using (10) and (11) in (9) results in
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(c) It follows from subproblem (b) that the Lagrange dual function ¢(c) can be writ-
ten as

witha = (1 1 1)T and

1
gle)=c1+co+c3— 5(02 (14 23 — 2Aeac3).

Since —g(c) is convex, we can, as mentioned in the hint, consider the Lagrange
function

Le,p,v) = —g(e) — p e+ (e + ¢ — c3),

where p = (1, 2, p3)’ € R® and v € R are Lagrange multipliers. The KKT
conditions now read as follows:

¢ >0, fori=1,2,3 (12)
Cl1+Cy—Cy = 0, (13)
w; >0, fori=1,23 (14)
Cilh; = 0, fori = 1, 2, 3 (15)

L
OLle) _ o fori—1.2.3, (16)
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Evaluating the derivatives in (16) yields

—1—ppm+v=0 (17)
—1+CQ—)\03—/L2+")/:0 (18)
—14+ (T +M)es — Aeg — s — v = 0. (19)

Suppose first that A € (0,1). The following figure depicts the separating straight
line between {x;, z,} and {x3} of largest possible margins for A = 1/2:
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From the figure we can see that x;, x5, and x; are all support vectors. We there-
fore make the ansatz ¢; > 0 fori = 1, 2, 3. Then, (15) implies that ji; = ps = p3 = 0.
Using this in (17)—(19) yields ¢, = 2X and ¢3 = 2. Finally, (13) implies that
c1 = 2 — 2\. We can therefore conclude that

ct=(2-2)x 2\ 2)T
is a solution of the Lagrange dual problem for A € (0, 1).

Next, suppose that A > 1. The following figure depicts the separating straight
line between {x;, x>} and {x3} of largest possible margins for A = 2:
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(d)

From the figure we can see that now x; and x;3 are the support vectors. This leads
to the ansatz c; > 0, c5 > 0, and ¢; = 0. Then, (15) implies that 5 = p3 = 0 and
(13) yields ¢y = c3. Using this in (17)-(19), we obtain
(A =1) =
02<1+)\2—)\) :/L1+2,

which yields
B 2
Ty oA
We can therefore conclude that
2
x_ = 1 1 T
<=5 ol )

is a solution of the Lagrange dual problem for A > 1.

By assumption we have A € (0,1). Using (10) and ¢* = (2 — 2\ 2\ 2)T from
subproblem (c), we obtain the following solution w* of the optimization problem

in subproblem (a):
w* =2 \xy — 23 = — (g) )

The solution b* can be obtained as follows. Since ¢; > 0, i.e., x; is a support
vector, the corresponding inequality constraint y; ((w, ;)2 — b0*) > 1 must be
satisfied with equality. This yields
b* = (w,x1)2 — 11
= 1.

The hard margin binary classifier gnm () is therefore given by

g () = ((w, )2 —17)
=-2(1 0)xz+1.



Problem 3

(a) Denote the ReLU function as p(x) = max{0, z}. The function f(z) can be realized
according to

f(z) = p(4x) — p(8x — 1.6) + p(14x — 5.6) — p(20z — 10) + p(14z — 8.4)
— p(8x — 6.4) + p(4x — 4).

This function can, in turn, be realized through a depth-2 ReLU network according

to
O(z) = Walp(Wh(2)))
with
4 0 T
8 —1.6 i)
14 —5.6 T3
Wi(z)=|[20]z+ ]| 10|, Wa@)=(1 -1 1 -1 1 —1 1)|ay
14 —8.4 x5
8 —6.4 Tg
4 —4 XT7

The network ® has depth 2, width 7, and connectivity 20.

(b) The following figure depicts f(g(z)). The axis of symmetry is at z = 0.5.
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(c) An alternative way to realize f(z) is obtained by first noting that f(z) is sym-
metric around x = 0.5 and can thus be written as f(x) = h(g(x)), where h(z) =
f(0.5z), for x € [0,1], and g(z) = p(2x) — p(4x — 2) + p(2z — 2) = W3 (p(W{(z))) is
the sawtooth function from subproblem (b). Here,

2 0 T
Wi(z) = (4)x+ (2) , Wi(z)=(1 -1 1) (xg) :
2 -2 x3
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The function h(x) = p(2z) — p(4x — 1.6) + p(Tz — 5.6) = Wo(p(Wi(x))) satisfies
h(z) = f(0.5z), for x € [O, ]. Here,

2 T
()(6) W@ = (1 -1 1 ()
7 —5.6 T3

Therefore, f(x) = h(g(z)) can be realized through the network
Oy (2 ) Wa(p(Wr(W5 (p(W(2)))))) = Wa(p(Ws(p(Wi(2)))))

with

2 T 0
Wi(x) = Wy (Wi (x)) = (4) (1 -1 1) (xg) + (1.6)
7 XT3 —5.6
2 =2 2 1 0
=14 —4 4 x| +[—-16].
T =T 7 x3 —5.6

The network @, has depth 3, width 3, and connectivity 19.



Problem 4

(@) (i) An e-covering of the compact set C C X with respect to the metric p is a set
{z1,...,2zy} C C such that for each = € C, there exists an i € [1, N] so that
p(z, x;) < e. The e-covering number N (e€;C, p) is the cardinality of a smallest
e-covering of C.

(ii) An e-packing of a compact set C C X with respect to the metric p is a set
{z1,...,2n} C C such that p(z;, ;) > ¢, for all distinct 7, j. The e-packing
number M (¢;C, p) is the cardinality of a largest e-packing of C.

(iii) N(2¢C,p) < M(2¢;C,p) < N(e;C, p) < M(e;C, p).

(b) (i) Let e < 27" be arbitrary but fixed, take K = log,(1/¢), and divide the
interval [, := [-27",27"] into L := [2K7"] > 2 sub-intervals of equal

length, centered at the points §;, = —27" + (Qi_i)an, fori € {1,2,...,L},

and each of length 21% < 27K = 2¢. By construction, for every 0 € I,
there is hence a j € {1,2,..., L} such that |# — 6;| < ¢, which proves that
A,(e) ={0;;1 € {1,2,...,L}}is an e-covering.

(ii) For the construction of the 2e-packing, take the points §; = —27" + %,

fori € {1,2,...,L}. As for every neighboring pair 0;,0; € I,, it holds that
|0, — 0] = 2= > 2¢, we have established that P, (¢) = {6};i € {1,2,...,L}}

constitutes a 2e-packing.We finally note that |P,(¢)| = |A,(e)| = [257™].
(iii) By (b.i) we have
N(€ I, p1) < [An(€)] = [277]

and by (b.ii),
M(2¢; 1,,, p1) > |Pu(e)] = [257™].

)
Combining this with M (2¢;C, p) < N(¢;C, p) for every compact set C in the
metric space (X, p), yields N(e; I,,, p1) = [257].

(c) (i) Ane-covering of C can be obtained by forming the Cartesian product, across
n € N, of the e-coverings of [-27",27"] according to A(e) = {f : N —
R; f(n) € A,(e),Yn € N}, where, for ¢ < 27", A,(¢) is the e-covering of
[—27",27"] constructed in subproblem (b.i) and A,,(¢) = {0}, for e > 27".

(ii) Fix e < 1/2 and take K = log,(1/€). By subproblems (b.iii) and (c.i), we have
K]-1

00 [
N(&C,pa) < |A(e)] = H |An(e)] < H o[ K1-n _ o([K]-1)[K]/2
n=1
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for some C > 0 that is independent of e.



