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Problem 1

(a) Note that |z| = p(x)+p(—z) and 10x = 1.25p02po2po2p(x), Vx > 0. Since |z| > 0,
the function f(z) = 10|z| can hence be realized through the network

\I/(x):1.25op020p020po(2 2)0/)0(_11)1:.

This network satisfies W (V) = 2, B(V) = 2, and has depth £(¥) = 5 and connec-
tivity M(V) =T7.

(b) The network ® consists of two affine maps, its depth is therefore 2, the width is
3 and the connectivity is 8. The plot of ®(z) on the interval [—1, 1] is depicted
below.
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(c) The function f(z) can be inferred from its definition according to f(z) = ®(2z)
on [—oo, 1/2] and by exploiting symmetry. In summary, we get

) ®(27), ifrxr <1/2,
f(x)_{(b(Z—Zx), if o> 1/2,

where ®(z) is the ReLU network from subproblem (b). The following figure de-
picting f(x) shows that f(z) is class-separating for the problem at hand.
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Denote the ReLU function as p(z) = max{0, z}. The function f(x) can be realized
according to

f(x) = p(2x) — p(2x — 0.4) + p(5x — 2) — p(10x — 5)
+ p(bz — 3) — p(2z — 1.6) + p(2z — 2).

The corresponding depth-2 ReLU network is given by
D(2) = (Wao po Wi)()

with
2 0 1
2 —0.4 T
5! —2 T3
Wi(z)=[10]z+]| =5 [, Wa(@)=(1 -1 1 -1 1 —1 1)|ay
5 -3 Ts
2 ~1.6 6
2 -2 T

The network ® has depth 2, width 7, and connectivity 20.

(d) The sawtooth functions g,(z) are periodic with period 275!, see Figure 1. Thus,
the cardinality of the set {z : gs(z) =1, x € [0,1]} is 2°7 L.
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Figure 1: Sawtooth functions



(e) Note that

2, if0<z<1/2
g(x) = p(22) — p(4x —2) + p(2x —2) = ¢ 2 — 22, if1/2<z<1,
0, otherwise.

It therefore follows that
f(z) = (®og)(x),

where we also used that ®(z) = 0,Vz < 0. The sawtooth function g(z) can be
realized through a ReLU network according to g(z) = p(2z) — p(4x — 2) + p(22 —
2) = (W5 o po WY)(z) with

2 0 T
Wi(z) = (4)x+ (2) , Wi(z)=(1 -1 1) (xg) :
2 -2 x3

Now, recall that the network ®(z) is given by ®(z) = (W5 0 p o W;) () with

1 O T
2.5 2 T3

The composition f(z) = (® o g) () can hence be realized through the network
Cy(w) = (Wao po WilW§ 0 po WY)(z) = (Wio poWjopoWj)(),

where

2 0 Ty
Wi(x) =W{(z) = (4):5 - (2) , Wi(z) =Wa(z)=(1 -1 1) (xz) ,
2 -2 x3

1 T 0
Wi(z) = (WiW3) (z) = ( 1) (1 -1 1) (x2> - (0.4)
2.5 T3 2
I -1 1 T 0
=1 -1 1 zo | —|04].
(2.5 —2.5 2.5) ($3> (2)

The network ®, has depth 3, width 3, and connectivity 19.



Problem 2

(@) (i) An e-covering of the compact set C C X with respect to the metric p is a set
{z1,...,2zy} C C such that for each = € C, there exists an i € [1, N] so that
p(z, x;) < e. The e-covering number N (e€;C, p) is the cardinality of a smallest
e-covering of C.

(ii) An e-packing of a compact set C C X with respect to the metric p is a set
{z1,...,2n} C C such that p(z;, ;) > ¢, for all distinct 7, j. The e-packing
number M (¢;C, p) is the cardinality of a largest e-packing of C.

(iii) N(2¢C,p) < M(2¢;C,p) < N(e;C, p) < M(e;C, p).

(b) (i) For every fy € F, we can find a 0; in the set {6y, ...,0r,0741}, such that

|0; — 0| < e. We then have
In
14 6x

o — folloo = m[%]lnu +0,z) — In(1 + 07)| = max
x€|0,

z€(0,1]
0, — 6 0, — 6
= max |Iln 1+u Smaxugwi—ﬂge.
z€[0,1] 140z ze[0,1]| 1+ 0z
Therefore, we can conclude that the set { fy,, - - -, fo,, for +1} constitutes an ¢-

covering of 7. An upper bound on the covering number is hence given by
N(EF | le) ST +2< 5 +2.
1

(ii) We construct an explicit packing as follows. Set ' = |4-|, and for i =
0,1,...,T, define 6; = 3ei. Moreover, note that for all i, ;7 with i # j, we

have
In
1 + 9]'1‘

= folloo = In(1+ 6;z) — In(1 + 6;z)| =
o, = Joyllse = max | (1 +052) ~In(1 +0,2)| = max

(0; — 0;)z (0; — 0;)z (0; — 0;)z
= | 1+ — > ~ 7 14+ —
;2[%?1(] N ( + 1+0x . ;2[%?%] 1+0;x + 1+0;x
— max (01 — GJ).% 1 + ejl' + 01.1' — ij — max (91 — (gj)l'
z€[0,1] 1+0x 1+06z z€f0,1] | 1+ 0,z

> pr— P—
= el 2 2 2 |~ °©

by definition of #;. We can therefore conclude that {fy,, ..., fs,} is an e-
packing and the corresponding packing number satisfies M (e; F, || - [|oc) >
T+1> 4.

(iii) By subproblems (a.iii), (b.i), and (b.ii), we obtain

1 1
— < M2 F, || [loo) S N(EF, |- lloo) < = +2,
Ge 2¢

which allows us to conclude that log N(e; F, || - ||oo) < log(1/€), as € — 0.



Problem 3

(a)

(b)

()

(d)

As a and T(a) differ only in digits after the b-th position in the fractional parts of
their binary representation, we have

la —al < i 27 = 2—bi2—i =270,
i=b+1 i=1

where we used )7, 27 = 1 in the last equality.

As Ty, acts entrywise on A;, we have

|4 =4 =14 - Bl <swpla—Ti() <27 M)
00 a€R
We therefore get
sup Ax ‘ = sup <A1 - fll> :cH (2)
r€[-1,1]4 0 ze[-1,1]d 0
< sup dHA1 — A |zl 3)
z€[—1,1]d 00

<d27’, (4)

where in (3) we used (1) and the inequality in the hint.

The first derivative of o is given by ¢’(z) = ——, © € R, which is positive for all

(1+ )
x € R. It therefore follows that o is strictly increasing, and hence sup,.p o(z) <
lim, , o(z) = 1 and inf,cg o(z) > lim, , , o(x) = 0. The second derivative of

o is given by ¢"(z) = (1& 6)3), x € R, which is positive on (—o0, 0) and negative

on (0, c0). This implies that ¢’ is increasing on (—oo, 0) and decreasing on (0, co).
Hence ¢’ attains its maximum at z = 0 with ¢/(0) = 1. For every z,y € R, by the
mean value theorem, there exists a real number z between z and y such that

o(x) —o(y) = o'(z)(z —y),

which implies

7(2) — oy = o2}z — )] < I~ ]

where we used 0 < 0/(z) < ¢’/(0) = 1.
We have
sup U(Al.CL') — a(fllx) H (5)
z€[—1,1]4 o0
< sup HAlx — Az ‘ (6)
z€[—1,1]4 00
< 1d2"’ (7)
— 4 J

where in (6) we used the definition of the ||-|| _-norm and the Lipschitz continuity
established in subproblem (c), and (7) follows from subproblem (b).
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(e) We have, for all z €

1,11,
D (z) - () ®)

— || 450 (A12) —Aga@ﬂ)Hm )
= [ 20 (A1) — Az (Asz) + Aso(Arz) = Aeo(Aua)| (10)
<42 (o (42) = o (Ain) )|+ (42 = A)or (Ara)| (11)
<N Ayl o (Arz) — o (As2) H +N‘A2 A, ‘U(Alx)Hw (12)
< ;lNd 27t 4+ N2, (13)

where in (12) we used the inequality derived in (3), and in (13) we employed
| A2]|, < 1, the result from subproblem (d), and Ha(flla:) H <1.



Problem 4

(a) The dichotomy { X7, X; } is said to be homogeneously linearly separable if there
exists a nonzero vector w; € R such that
(x,wy) >0, forallz € X;,
(x,wy) <0, forall z € X,

and it is said to be ¢-separable if there exists a nonzero vector w, € R™ such that

(p(x),wy) >0, forall z € X,
(p(x),ws) <0, forallx € X, .

Since there are at most 2°44(X1) dichotomies of X, as explained in the lecture,
it follows from the inclusion relation that the number of homogeneously linearly
separable dichotomies of X is less than or equal to 2<4(X1), with equality if every
dichotomy of X; is homogeneously linearly separable.

(b) Let Sx,, Sx,u{z:} be the sets of homogeneously linearly separable dichotomies of
Xy and X; U {2}, respectively. Consider a dichotomy {X*, X~} € Sx,u(s,} and
note that { X, X~} can be written as

{XTU{m}, X} or { X7, X7 U{a1}} (14)

for some dichotomy { X;", X } of X;. As X;{” C X" and X; C X, the dichotomy
{X{, X } can be separated by the hyperplane that separates {X*, X~ }. There-
fore, the dichotomy {X;", X } in (14) is homogeneously linearly separable and
we have

Sxiufay C {{X7 U{m}, X7} or {X{F, X7 U{xi}}: {X{, X7} € Sx |,
which implies
card(Sx, () < 2 card(Sy,) = 2C.
(c) The dichotomy is not homogeneously linearly separable as there is no line through

the origin such that (—1,0) and (1,0) lie on the same side of the line. Otherwise,
there would exist a nonzero vector w = (wy, w,) € R? such that (w, (1,0)) = w; >

0 and (w, (—1,0)) = —w; < 0, which constitutes a contradiction. See Fig. 2 for an
illustration.
0,1
(~1,0) (0,0) (1,0)

Figure 2: If the dichotomy were homogeneously linearly separable, there would exist
a line through the origin that separates the blue points from the red point.
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(d) The dichotomy is ¢;-separable. Let w = (1,—1). Then, (¢1(1,0),w) =1 > 0,
(p1(—1,0),w) =1>0,and (¢;(0,1),w) = -1 < 0.

(e) Suppose for the sake of contradiction that the dichotomy { X3, X3 } is ¢o-separable.
Then, there would exist a nonzero vector w = (wy, wo, w3, wy) € R* such that
(po(z,y),w) >0, forall (z,y) € Xy,
(92(x,y), w) <0, forall (z,y) € Xy,

that is
wy + Wa + wg >0, (15)
w1 — Wa + wy > O, (16)
wq + w3z + wy < 0, (17)
w1 — w3 + wy < 0. (18)

Adding (15) and (16), we obtain w; + ws > 0, while adding (17) and (18) yields
w; + wy < 0, which establishes the contradiction.



