

Solutions to the Exam on Neural Network Theory February 11, 2021

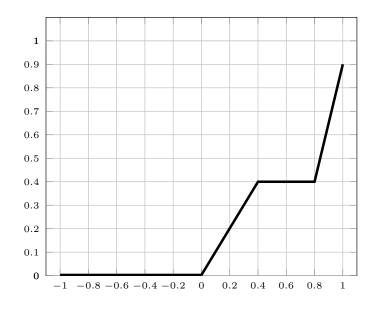
Problem 1

(a) Note that $|x| = \rho(x) + \rho(-x)$ and $10x = 1.25\rho \circ 2\rho \circ 2\rho \circ 2\rho(x)$, $\forall x \ge 0$. Since $|x| \ge 0$, the function f(x) = 10|x| can hence be realized through the network

$$\Psi(x) = 1.25 \circ \rho \circ 2 \circ \rho \circ 2 \circ \rho \circ (2 \quad 2) \circ \rho \circ \begin{pmatrix} 1 \\ -1 \end{pmatrix} x.$$

This network satisfies $W(\Psi) = 2$, $\mathcal{B}(\Psi) = 2$, and has depth $\mathcal{L}(\Psi) = 5$ and connectivity $\mathcal{M}(\Psi) = 7$.

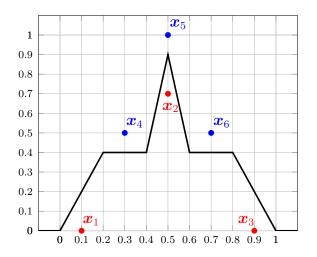
(b) The network Φ consists of two affine maps, its depth is therefore 2, the width is 3 and the connectivity is 8. The plot of $\Phi(x)$ on the interval [-1,1] is depicted below.



(c) The function f(x) can be inferred from its definition according to $f(x) = \Phi(2x)$ on $[-\infty, 1/2]$ and by exploiting symmetry. In summary, we get

$$f(x) = \begin{cases} \Phi(2x), & \text{if } x \le 1/2, \\ \Phi(2-2x), & \text{if } x > 1/2, \end{cases}$$

where $\Phi(x)$ is the ReLU network from subproblem (b). The following figure depicting f(x) shows that f(x) is class-separating for the problem at hand.



Denote the ReLU function as $\rho(x) = \max\{0, x\}$. The function f(x) can be realized according to

$$f(x) = \rho(2x) - \rho(2x - 0.4) + \rho(5x - 2) - \rho(10x - 5) + \rho(5x - 3) - \rho(2x - 1.6) + \rho(2x - 2).$$

The corresponding depth-2 ReLU network is given by

$$\Phi(x) = (W_2 \circ \rho \circ W_1)(x)$$

with

$$W_{1}(x) = \begin{pmatrix} 2\\2\\5\\10\\5\\2\\2 \end{pmatrix} x + \begin{pmatrix} 0\\-0.4\\-2\\-5\\-3\\-1.6\\-2 \end{pmatrix}, \quad W_{2}(x) = \begin{pmatrix} 1 & -1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_{1}\\x_{2}\\x_{3}\\x_{4}\\x_{5}\\x_{6}\\x_{7} \end{pmatrix}.$$

The network Φ has depth 2, width 7, and connectivity 20.

(d) The sawtooth functions $g_s(x)$ are periodic with period 2^{-s+1} , see Figure 1. Thus, the cardinality of the set $\{x : g_s(x) = 1, x \in [0, 1]\}$ is 2^{s-1} .

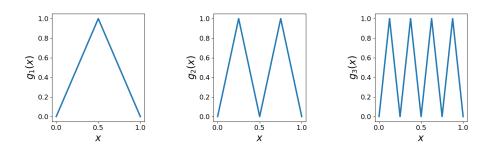


Figure 1: Sawtooth functions

(e) Note that

$$g(x) = \rho(2x) - \rho(4x - 2) + \rho(2x - 2) = \begin{cases} 2x, & \text{if } 0 \le x \le 1/2, \\ 2 - 2x, & \text{if } 1/2 < x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

It therefore follows that

$$f(x) = (\Phi \circ g)(x),$$

where we also used that $\Phi(x) = 0, \forall x \leq 0$. The sawtooth function g(x) can be realized through a ReLU network according to $g(x) = \rho(2x) - \rho(4x - 2) + \rho(2x - 2) = (W_2^g \circ \rho \circ W_1^g)(x)$ with

$$W_1^g(x) = \begin{pmatrix} 2\\4\\2 \end{pmatrix} x + \begin{pmatrix} 0\\-2\\-2 \end{pmatrix}, \quad W_2^g(x) = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}.$$

Now, recall that the network $\Phi(x)$ is given by $\Phi(x) = (W_2 \circ \rho \circ W_1)(x)$ with

$$W_1(x) = \begin{pmatrix} 1\\1\\2.5 \end{pmatrix} x - \begin{pmatrix} 0\\0.4\\2 \end{pmatrix}, \quad W_2(x) = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}.$$

The composition $f(x) = (\Phi \circ g)(x)$ can hence be realized through the network

$$\Phi_2(x) = \left(W_2 \circ \rho \circ W_1 W_2^g \circ \rho \circ W_1^g\right)(x) = \left(W_3' \circ \rho \circ W_2' \circ \rho \circ W_1'\right)(x),$$

where

$$W_1'(x) = W_1^g(x) = \begin{pmatrix} 2\\4\\2 \end{pmatrix} x + \begin{pmatrix} 0\\-2\\-2 \end{pmatrix}, \quad W_3'(x) = W_2(x) = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix},$$
$$W_2'(x) = \begin{pmatrix} W_1 W_2^g \end{pmatrix} (x) = \begin{pmatrix} 1\\1\\2.5 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 2.5 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} - \begin{pmatrix} 0\\0.4\\2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 & 1\\1 & -1 & 1\\2.5 & -2.5 & 2.5 \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} - \begin{pmatrix} 0\\0.4\\2 \end{pmatrix}.$$

The network Φ_2 has depth 3, width 3, and connectivity 19.

Problem 2

- (a) (i) An ϵ -covering of the compact set $C \subseteq \mathcal{X}$ with respect to the metric ρ is a set $\{x_1, \ldots, x_N\} \subset C$ such that for each $x \in C$, there exists an $i \in [1, N]$ so that $\rho(x, x_i) \leq \epsilon$. The ϵ -covering number $N(\epsilon; C, \rho)$ is the cardinality of a smallest ϵ -covering of C.
 - (ii) An ϵ -packing of a compact set $C \subseteq \mathcal{X}$ with respect to the metric ρ is a set $\{x_1, \ldots, x_N\} \subset C$ such that $\rho(x_i, x_j) > \epsilon$, for all distinct i, j. The ϵ -packing number $M(\epsilon; C, \rho)$ is the cardinality of a largest ϵ -packing of C.
 - (iii) $N(2\epsilon; \mathcal{C}, \rho) \le M(2\epsilon; \mathcal{C}, \rho) \le N(\epsilon; \mathcal{C}, \rho) \le M(\epsilon; \mathcal{C}, \rho).$
- (b) (i) For every $f_{\theta} \in \mathcal{F}$, we can find a θ_i in the set $\{\theta_0, \ldots, \theta_T, \theta_{T+1}\}$, such that $|\theta_i \theta| \leq \epsilon$. We then have

$$\begin{split} \|f_{\theta_i} - f_{\theta}\|_{\infty} &= \max_{x \in [0,1]} \left| \ln(1 + \theta_i x) - \ln(1 + \theta x) \right| = \max_{x \in [0,1]} \left| \ln\left(\frac{1 + \theta_i x}{1 + \theta x}\right) \right| \\ &= \max_{x \in [0,1]} \left| \ln\left(1 + \frac{(\theta_i - \theta)x}{1 + \theta x}\right) \right| \le \max_{x \in [0,1]} \left| \frac{(\theta_i - \theta)x}{1 + \theta x} \right| \le |\theta_i - \theta| \le \epsilon. \end{split}$$

Therefore, we can conclude that the set $\{f_{\theta_0}, \ldots, f_{\theta_T}, f_{\theta_{T+1}}\}$ constitutes an ϵ -covering of \mathcal{F} . An upper bound on the covering number is hence given by $N(\epsilon; \mathcal{F}, \|\cdot\|_{\infty}) \leq T + 2 \leq \frac{1}{2\epsilon} + 2$.

(ii) We construct an explicit packing as follows. Set $T = \lfloor \frac{1}{3\epsilon} \rfloor$, and for $i = 0, 1, \ldots, T$, define $\theta_i = 3\epsilon i$. Moreover, note that for all i, j with $i \neq j$, we have

$$\begin{split} \|f_{\theta_i} - f_{\theta_j}\|_{\infty} &= \max_{x \in [0,1]} \left| \ln(1+\theta_i x) - \ln(1+\theta_j x) \right| = \max_{x \in [0,1]} \left| \ln\left(\frac{1+\theta_i x}{1+\theta_j x}\right) \right| \\ &= \max_{x \in [0,1]} \left| \ln\left(1+\frac{(\theta_i - \theta_j) x}{1+\theta_j x}\right) \right| \ge \max_{x \in [0,1]} \left| \left(\frac{(\theta_i - \theta_j) x}{1+\theta_j x}\right) \right/ \left(1+\frac{(\theta_i - \theta_j) x}{1+\theta_j x}\right) \right| \\ &= \max_{x \in [0,1]} \left| \left(\frac{(\theta_i - \theta_j) x}{1+\theta_j x}\right) \right/ \left(\frac{1+\theta_j x+\theta_i x-\theta_j x}{1+\theta_j x}\right) \right| = \max_{x \in [0,1]} \left| \frac{(\theta_i - \theta_j) x}{1+\theta_i x} \right| \\ &\ge \max_{x \in [0,1]} \left| \frac{(\theta_i - \theta_j) x}{2} \right| = \left| \frac{\theta_i - \theta_j}{2} \right| = \left| \frac{3\epsilon(i-j)}{2} \right| > \epsilon, \end{split}$$

by definition of θ_i . We can therefore conclude that $\{f_{\theta_0}, \ldots, f_{\theta_T}\}$ is an ϵ -packing and the corresponding packing number satisfies $M(\epsilon; \mathcal{F}, \|\cdot\|_{\infty}) \geq T+1 \geq \frac{1}{3\epsilon}$.

(iii) By subproblems (a.iii), (b.i), and (b.ii), we obtain

$$\frac{1}{6\epsilon} \le M(2\epsilon; \mathcal{F}, \|\cdot\|_{\infty}) \le N(\epsilon; \mathcal{F}, \|\cdot\|_{\infty}) \le \frac{1}{2\epsilon} + 2,$$

which allows us to conclude that $\log N(\epsilon; \mathcal{F}, \|\cdot\|_{\infty}) \asymp \log(1/\epsilon)$, as $\epsilon \to 0$.

Problem 3

(a) As *a* and $T_b(a)$ differ only in digits after the *b*-th position in the fractional parts of their binary representation, we have

$$|a - \tilde{a}| \le \sum_{i=b+1}^{\infty} 2^{-i} = 2^{-b} \sum_{i=1}^{\infty} 2^{-i} = 2^{-b},$$

where we used $\sum_{i=1}^{\infty} 2^{-i} = 1$ in the last equality.

(b) As T_b acts entrywise on A_1 , we have

$$\left\| A_1 - \tilde{A}_1 \right\|_{\infty} = \left\| A_1 - T_b(A_1) \right\|_{\infty} \le \sup_{a \in \mathbb{R}} |a - T_b(a)| \le 2^{-b}.$$
 (1)

We therefore get

$$\sup_{x \in [-1,1]^d} \left\| Ax - \tilde{A}_1 x \right\|_{\infty} = \sup_{x \in [-1,1]^d} \left\| \left(A_1 - \tilde{A}_1 \right) x \right\|_{\infty}$$
(2)

$$\leq \sup_{x \in [-1,1]^d} d \left\| A_1 - \tilde{A}_1 \right\|_{\infty} \|x\|_{\infty}$$
(3)

$$\leq d \, 2^{-b},\tag{4}$$

where in (3) we used (1) and the inequality in the hint.

(c) The first derivative of σ is given by $\sigma'(x) = \frac{e^x}{(1+e^x)^2}$, $x \in \mathbb{R}$, which is positive for all $x \in \mathbb{R}$. It therefore follows that σ is strictly increasing, and hence $\sup_{x \in \mathbb{R}} \sigma(x) \leq \lim_{x \to \infty} \sigma(x) = 1$ and $\inf_{x \in \mathbb{R}} \sigma(x) \geq \lim_{x \to -\infty} \sigma(x) = 0$. The second derivative of σ is given by $\sigma''(x) = \frac{e^x(1-e^x)}{(1+e^x)^3}$, $x \in \mathbb{R}$, which is positive on $(-\infty, 0)$ and negative on $(0, \infty)$. This implies that σ' is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$. Hence σ' attains its maximum at x = 0 with $\sigma'(0) = \frac{1}{4}$. For every $x, y \in \mathbb{R}$, by the mean value theorem, there exists a real number z between x and y such that

$$\sigma(x) - \sigma(y) = \sigma'(z)(x - y),$$

which implies

$$|\sigma(x) - \sigma(y)| = |\sigma'(z)(x - y)| \le \frac{1}{4} |x - y|,$$

where we used $0 < \sigma'(z) \le \sigma'(0) = \frac{1}{4}$.

(d) We have

$$\sup_{x\in[-1,1]^d} \left\| \sigma(A_1 x) - \sigma(\tilde{A}_1 x) \right\|_{\infty}$$
(5)

$$\leq \sup_{x \in [-1,1]^d} \frac{1}{4} \left\| A_1 x - \tilde{A}_1 x \right\|_{\infty}$$
(6)

$$\leq \frac{1}{4}d \, 2^{-b},$$
 (7)

where in (6) we used the definition of the $\|\cdot\|_{\infty}$ -norm and the Lipschitz continuity established in subproblem (c), and (7) follows from subproblem (b).

(e) We have, for all $x \in [-1, 1]^d$,

$$\left| \Phi(x) - \tilde{\Phi}(x) \right| \tag{8}$$

$$= \left\| A_2 \sigma(A_1 x) - \tilde{A}_2 \sigma(\tilde{A}_1 x) \right\|_{\infty}$$
(9)

$$= \left\| A_2 \sigma(A_1 x) - A_2 \sigma(\tilde{A}_1 x) + A_2 \sigma(\tilde{A}_1 x) - \tilde{A}_2 \sigma(\tilde{A}_1 x) \right\|_{\infty}$$
(10)

$$\leq \left\| A_2 \left(\sigma(A_1 x) - \sigma(\tilde{A}_1 x) \right) \right\|_{\infty} + \left\| (A_2 - \tilde{A}_2) \sigma(\tilde{A}_1 x) \right\|_{\infty}$$

$$(11)$$

$$\leq N \left\| A_2 \right\|_{\infty} \left\| \sigma(A_1 x) - \sigma(\tilde{A}_1 x) \right\|_{\infty} + N \left\| A_2 - \tilde{A}_2 \right\|_{\infty} \left\| \sigma(\tilde{A}_1 x) \right\|_{\infty}$$
(12)

$$\leq \frac{1}{4} N d \, 2^{-b} + N 2^{-b},\tag{13}$$

where in (12) we used the inequality derived in (3), and in (13) we employed $||A_2||_{\infty} \leq 1$, the result from subproblem (d), and $||\sigma(\tilde{A}_1 x)||_{\infty} \leq 1$.

Problem 4

(a) The dichotomy $\{X_1^+, X_1^-\}$ is said to be homogeneously linearly separable if there exists a nonzero vector $w_1 \in \mathbb{R}^d$ such that

$$\langle x, w_1 \rangle > 0$$
, for all $x \in X_1^+$,
 $\langle x, w_1 \rangle < 0$, for all $x \in X_1^-$,

and it is said to be ϕ -separable if there exists a nonzero vector $w_2 \in \mathbb{R}^m$ such that

$$\langle \phi(x), w_2 \rangle > 0$$
, for all $x \in X_1^+$,
 $\langle \phi(x), w_2 \rangle < 0$, for all $x \in X_1^-$.

Since there are at most $2^{\operatorname{card}(X_1)}$ dichotomies of X_1 , as explained in the lecture, it follows from the inclusion relation that the number of homogeneously linearly separable dichotomies of X_1 is less than or equal to $2^{\operatorname{card}(X_1)}$, with equality if every dichotomy of X_1 is homogeneously linearly separable.

(b) Let $S_{X_1}, S_{X_1 \cup \{x_1\}}$ be the sets of homogeneously linearly separable dichotomies of X_1 and $X_1 \cup \{x_1\}$, respectively. Consider a dichotomy $\{X^+, X^-\} \in S_{X_1 \cup \{x_1\}}$ and note that $\{X^+, X^-\}$ can be written as

$$\{X_1^+ \cup \{x_1\}, X_1^-\} \text{ or } \{X_1^+, X_1^- \cup \{x_1\}\}$$
(14)

for some dichotomy $\{X_1^+, X_1^-\}$ of X_1 . As $X_1^+ \subset X^+$ and $X_1^- \subset X^-$, the dichotomy $\{X_1^+, X_1^-\}$ can be separated by the hyperplane that separates $\{X^+, X^-\}$. Therefore, the dichotomy $\{X_1^+, X_1^-\}$ in (14) is homogeneously linearly separable and we have

$$S_{X_1 \cup \{x_1\}} \subset \left\{ \left\{ X_1^+ \cup \{x_1\}, X_1^- \right\} \text{ or } \left\{ X_1^+, X_1^- \cup \{x_1\} \right\} : \left\{ X_1^+, X_1^- \right\} \in S_{X_1} \right\},\$$

which implies

$$\operatorname{card}(S_{X_1 \cup \{x_1\}}) \le 2 \operatorname{card}(S_{X_1}) = 2C.$$

(c) The dichotomy is not homogeneously linearly separable as there is no line through the origin such that (-1,0) and (1,0) lie on the same side of the line. Otherwise, there would exist a nonzero vector $w = (w_1, w_2) \in \mathbb{R}^2$ such that $\langle w, (1,0) \rangle = w_1 > 0$ and $\langle w, (-1,0) \rangle = -w_1 < 0$, which constitutes a contradiction. See Fig. 2 for an illustration.

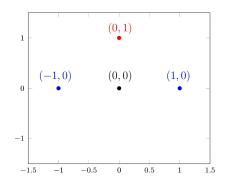


Figure 2: If the dichotomy were homogeneously linearly separable, there would exist a line through the origin that separates the blue points from the red point.

- (d) The dichotomy is ϕ_1 -separable. Let w = (1, -1). Then, $\langle \phi_1(1, 0), w \rangle = 1 > 0$, $\langle \phi_1(-1, 0), w \rangle = 1 > 0$, and $\langle \phi_1(0, 1), w \rangle = -1 < 0$.
- (e) Suppose for the sake of contradiction that the dichotomy $\{X_3^+, X_3^-\}$ is ϕ_2 -separable. Then, there would exist a nonzero vector $w = (w_1, w_2, w_3, w_4) \in \mathbb{R}^4$ such that

$$\langle \phi_2(x,y), w \rangle > 0$$
, for all $(x,y) \in X_3^+$,
 $\langle \phi_2(x,y), w \rangle < 0$, for all $(x,y) \in X_3^-$,

that is

 $w_1 + w_2 + w_4 > 0,$ (15)

$$w_1 - w_2 + w_4 > 0,$$
 (16)

- $w_1 + w_3 + w_4 < 0, \tag{17}$
- $w_1 w_3 + w_4 < 0. \tag{18}$

Adding (15) and (16), we obtain $w_1 + w_4 > 0$, while adding (17) and (18) yields $w_1 + w_4 < 0$, which establishes the contradiction.