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Problem 1

(a) Note that |x| = ρ(x)+ρ(−x) and 10x = 1.25ρ◦2ρ◦2ρ◦2ρ(x), ∀x ≥ 0. Since |x| ≥ 0,
the function f(x) = 10|x| can hence be realized through the network

Ψ(x) = 1.25 ◦ ρ ◦ 2 ◦ ρ ◦ 2 ◦ ρ ◦
(
2 2

)
◦ ρ ◦

(
1
−1

)
x.

This network satisfiesW(Ψ) = 2, B(Ψ) = 2, and has depth L(Ψ) = 5 and connec-
tivityM(Ψ) = 7.

(b) The network Φ consists of two affine maps, its depth is therefore 2, the width is
3 and the connectivity is 8. The plot of Φ(x) on the interval [−1, 1] is depicted
below.
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(c) The function f(x) can be inferred from its definition according to f(x) = Φ(2x)
on [−∞, 1/2] and by exploiting symmetry. In summary, we get

f(x) =

{
Φ(2x), if x ≤ 1/2,

Φ(2− 2x), if x > 1/2,

where Φ(x) is the ReLU network from subproblem (b). The following figure de-
picting f(x) shows that f(x) is class-separating for the problem at hand.
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Denote the ReLU function as ρ(x) = max{0, x}. The function f(x) can be realized
according to

f(x) = ρ(2x)− ρ(2x− 0.4) + ρ(5x− 2)− ρ(10x− 5)

+ ρ(5x− 3)− ρ(2x− 1.6) + ρ(2x− 2).

The corresponding depth-2 ReLU network is given by

Φ(x) =
(
W2 ◦ ρ ◦W1

)
(x)

with

W1(x) =



2
2
5
10
5
2
2


x+



0
−0.4
−2
−5
−3
−1.6
−2


, W2(x) =

(
1 −1 1 −1 1 −1 1

)


x1
x2
x3
x4
x5
x6
x7


.

The network Φ has depth 2, width 7, and connectivity 20.

(d) The sawtooth functions gs(x) are periodic with period 2−s+1, see Figure 1. Thus,
the cardinality of the set {x : gs(x) = 1, x ∈ [0, 1]} is 2s−1.

Figure 1: Sawtooth functions
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(e) Note that

g(x) = ρ(2x)− ρ(4x− 2) + ρ(2x− 2) =


2x, if 0 ≤ x ≤ 1/2,

2− 2x, if 1/2 < x ≤ 1,

0, otherwise.

It therefore follows that

f(x) =
(
Φ ◦ g

)
(x),

where we also used that Φ(x) = 0,∀x ≤ 0. The sawtooth function g(x) can be
realized through a ReLU network according to g(x) = ρ(2x)− ρ(4x− 2) + ρ(2x−
2) =

(
W g

2 ◦ ρ ◦W
g
1

)
(x) with

W g
1 (x) =

2
4
2

x+

 0
−2
−2

 , W g
2 (x) =

(
1 −1 1

)x1x2
x3

 .

Now, recall that the network Φ(x) is given by Φ(x) =
(
W2 ◦ ρ ◦W1

)
(x) with

W1(x) =

 1
1

2.5

x−
 0

0.4
2

 , W2(x) =
(
1 −1 1

)x1x2
x3

 .

The composition f(x) =
(
Φ ◦ g

)
(x) can hence be realized through the network

Φ2(x) =
(
W2 ◦ ρ ◦W1W

g
2 ◦ ρ ◦W

g
1

)
(x) =

(
W ′

3 ◦ ρ ◦W ′
2 ◦ ρ ◦W ′

1

)
(x),

where

W ′
1(x) = W g

1 (x) =

2
4
2

x+

 0
−2
−2

 , W ′
3(x) = W2(x) =

(
1 −1 1

)x1x2
x3

 ,

W ′
2(x) =

(
W1W

g
2

)
(x) =

 1
1

2.5

(1 −1 1
)x1x2

x3

−
 0

0.4
2


=

 1 −1 1
1 −1 1

2.5 −2.5 2.5

x1x2
x3

−
 0

0.4
2

 .

The network Φ2 has depth 3, width 3, and connectivity 19.
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Problem 2

(a) (i) An ε-covering of the compact set C ⊆ X with respect to the metric ρ is a set
{x1, . . . , xN} ⊂ C such that for each x ∈ C, there exists an i ∈ [1, N ] so that
ρ(x, xi) ≤ ε. The ε-covering number N(ε; C, ρ) is the cardinality of a smallest
ε-covering of C.

(ii) An ε-packing of a compact set C ⊆ X with respect to the metric ρ is a set
{x1, . . . , xN} ⊂ C such that ρ(xi, xj) > ε, for all distinct i, j. The ε-packing
number M(ε; C, ρ) is the cardinality of a largest ε-packing of C.

(iii) N(2ε; C, ρ) ≤M(2ε; C, ρ) ≤ N(ε; C, ρ) ≤M(ε; C, ρ).

(b) (i) For every fθ ∈ F , we can find a θi in the set {θ0, . . . , θT , θT+1}, such that
|θi − θ| ≤ ε. We then have

‖fθi − fθ‖∞ = max
x∈[0,1]

∣∣∣ ln(1 + θix)− ln(1 + θx)
∣∣∣ = max

x∈[0,1]

∣∣∣∣∣ ln
(

1 + θix

1 + θx

)∣∣∣∣∣
= max

x∈[0,1]

∣∣∣∣∣ ln
(

1 +
(θi − θ)x
1 + θx

)∣∣∣∣∣ ≤ max
x∈[0,1]

∣∣∣∣∣(θi − θ)x1 + θx

∣∣∣∣∣ ≤ |θi − θ| ≤ ε.

Therefore, we can conclude that the set {fθ0 , . . . , fθT , fθT+1
} constitutes an ε-

covering of F . An upper bound on the covering number is hence given by
N(ε;F , ‖ · ‖∞) ≤ T + 2 ≤ 1

2ε
+ 2.

(ii) We construct an explicit packing as follows. Set T =
⌊

1
3ε

⌋
, and for i =

0, 1, . . . , T , define θi = 3εi. Moreover, note that for all i, j with i 6= j, we
have

‖fθi − fθj‖∞ = max
x∈[0,1]

∣∣∣ ln(1 + θix)− ln(1 + θjx)
∣∣∣ = max

x∈[0,1]

∣∣∣∣∣ ln
(

1 + θix

1 + θjx

)∣∣∣∣∣
= max

x∈[0,1]

∣∣∣∣∣ ln
(

1 +
(θi − θj)x
1 + θjx

)∣∣∣∣∣ ≥ max
x∈[0,1]

∣∣∣∣∣
(

(θi − θj)x
1 + θjx

)/(
1 +

(θi − θj)x
1 + θjx

)∣∣∣∣∣
= max

x∈[0,1]

∣∣∣∣∣
(

(θi − θj)x
1 + θjx

)/(
1 + θjx+ θix− θjx

1 + θjx

)∣∣∣∣∣ = max
x∈[0,1]

∣∣∣∣∣(θi − θj)x1 + θix

∣∣∣∣∣
≥ max

x∈[0,1]

∣∣∣∣∣(θi − θj)x2

∣∣∣∣∣ =

∣∣∣∣∣θi − θj2

∣∣∣∣∣ =

∣∣∣∣∣3ε(i− j)2

∣∣∣∣∣ > ε,

by definition of θi. We can therefore conclude that {fθ0 , . . . , fθT } is an ε-
packing and the corresponding packing number satisfies M(ε;F , ‖ · ‖∞) ≥
T + 1 ≥ 1

3ε
.

(iii) By subproblems (a.iii), (b.i), and (b.ii), we obtain

1

6ε
≤M(2ε;F , ‖ · ‖∞) ≤ N(ε;F , ‖ · ‖∞) ≤ 1

2ε
+ 2,

which allows us to conclude that logN(ε;F , ‖ · ‖∞) � log(1/ε), as ε→ 0.
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Problem 3

(a) As a and Tb(a) differ only in digits after the b-th position in the fractional parts of
their binary representation, we have

|a− ã| ≤
∞∑

i=b+1

2−i = 2−b
∞∑
i=1

2−i = 2−b,

where we used
∑∞

i=1 2−i = 1 in the last equality.

(b) As Tb acts entrywise on A1, we have∥∥∥A1 − Ã1

∥∥∥
∞

= ‖A1 − Tb(A1)‖∞ ≤ sup
a∈R
|a− Tb(a)| ≤ 2−b. (1)

We therefore get

sup
x∈[−1,1]d

∥∥∥Ax− Ã1x
∥∥∥
∞

= sup
x∈[−1,1]d

∥∥∥(A1 − Ã1

)
x
∥∥∥
∞

(2)

≤ sup
x∈[−1,1]d

d
∥∥∥A1 − Ã1

∥∥∥
∞
‖x‖∞ (3)

≤ d 2−b, (4)

where in (3) we used (1) and the inequality in the hint.

(c) The first derivative of σ is given by σ′(x) = ex

(1+ex)2
, x ∈ R, which is positive for all

x ∈ R. It therefore follows that σ is strictly increasing, and hence supx∈R σ(x) ≤
limx→∞ σ(x) = 1 and infx∈R σ(x) ≥ limx→−∞ σ(x) = 0. The second derivative of
σ is given by σ′′(x) = ex(1−ex)

(1+ex)3
, x ∈ R, which is positive on (−∞, 0) and negative

on (0,∞). This implies that σ′ is increasing on (−∞, 0) and decreasing on (0,∞).
Hence σ′ attains its maximum at x = 0 with σ′(0) = 1

4
. For every x, y ∈ R, by the

mean value theorem, there exists a real number z between x and y such that

σ(x)− σ(y) = σ′(z)(x− y),

which implies

|σ(x)− σ(y)| = |σ′(z)(x− y)| ≤ 1

4
|x− y| ,

where we used 0 < σ′(z) ≤ σ′(0) = 1
4
.

(d) We have

sup
x∈[−1,1]d

∥∥∥σ(A1x
)
− σ

(
Ã1x

)∥∥∥
∞

(5)

≤ sup
x∈[−1,1]d

1

4

∥∥∥A1x− Ã1x
∥∥∥
∞

(6)

≤ 1

4
d 2−b, (7)

where in (6) we used the definition of the ‖·‖∞-norm and the Lipschitz continuity
established in subproblem (c), and (7) follows from subproblem (b).
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(e) We have, for all x ∈ [−1, 1]d,∣∣∣Φ(x)− Φ̃(x)
∣∣∣ (8)

=
∥∥∥A2σ(A1x)− Ã2σ(Ã1x)

∥∥∥
∞

(9)

=
∥∥∥A2σ

(
A1x

)
− A2σ

(
Ã1x

)
+ A2σ

(
Ã1x

)
− Ã2σ

(
Ã1x

)∥∥∥
∞

(10)

≤
∥∥∥A2

(
σ
(
A1x

)
− σ

(
Ã1x

))∥∥∥
∞

+
∥∥∥(A2 − Ã2

)
σ
(
Ã1x

)∥∥∥
∞

(11)

≤N ‖A2‖∞
∥∥∥σ(A1x

)
− σ

(
Ã1x

)∥∥∥
∞

+N
∥∥∥A2 − Ã2

∥∥∥
∞

∥∥∥σ(Ã1x
)∥∥∥
∞

(12)

≤ 1

4
Nd 2−b +N2−b, (13)

where in (12) we used the inequality derived in (3), and in (13) we employed
‖A2‖∞ ≤ 1, the result from subproblem (d), and

∥∥∥σ(Ã1x
)∥∥∥
∞
≤ 1.
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Problem 4

(a) The dichotomy
{
X+

1 , X
−
1

}
is said to be homogeneously linearly separable if there

exists a nonzero vector w1 ∈ Rd such that

〈x,w1〉 > 0, for all x ∈ X+
1 ,

〈x,w1〉 < 0, for all x ∈ X−1 ,

and it is said to be φ-separable if there exists a nonzero vector w2 ∈ Rm such that

〈φ(x), w2〉 > 0, for all x ∈ X+
1 ,

〈φ(x), w2〉 < 0, for all x ∈ X−1 .

Since there are at most 2card(X1) dichotomies of X1, as explained in the lecture,
it follows from the inclusion relation that the number of homogeneously linearly
separable dichotomies ofX1 is less than or equal to 2card(X1), with equality if every
dichotomy of X1 is homogeneously linearly separable.

(b) Let SX1 , SX1∪{x1} be the sets of homogeneously linearly separable dichotomies of
X1 and X1 ∪ {x1}, respectively. Consider a dichotomy {X+, X−} ∈ SX1∪{x1} and
note that {X+, X−} can be written as{

X+
1 ∪ {x1} , X−1

}
or
{
X+

1 , X
−
1 ∪ {x1}

}
(14)

for some dichotomy
{
X+

1 , X
−
1

}
ofX1. AsX+

1 ⊂ X+ andX−1 ⊂ X−, the dichotomy{
X+

1 , X
−
1

}
can be separated by the hyperplane that separates {X+, X−}. There-

fore, the dichotomy
{
X+

1 , X
−
1

}
in (14) is homogeneously linearly separable and

we have

SX1∪{x1} ⊂
{{
X+

1 ∪ {x1} , X−1
}

or
{
X+

1 , X
−
1 ∪ {x1}

}
:
{
X+

1 , X
−
1

}
∈ SX1

}
,

which implies
card

(
SX1∪{x1}

)
≤ 2 card

(
SX1

)
= 2C.

(c) The dichotomy is not homogeneously linearly separable as there is no line through
the origin such that (−1, 0) and (1, 0) lie on the same side of the line. Otherwise,
there would exist a nonzero vector w =

(
w1, w2

)
∈ R2 such that 〈w, (1, 0)〉 = w1 >

0 and 〈w, (−1, 0)〉 = −w1 < 0, which constitutes a contradiction. See Fig. 2 for an
illustration.

Figure 2: If the dichotomy were homogeneously linearly separable, there would exist
a line through the origin that separates the blue points from the red point.
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(d) The dichotomy is φ1-separable. Let w = (1,−1). Then, 〈φ1(1, 0), w〉 = 1 > 0,
〈φ1(−1, 0), w〉 = 1 > 0, and 〈φ1(0, 1), w〉 = −1 < 0.

(e) Suppose for the sake of contradiction that the dichotomy
{
X+

3 , X
−
3

}
is φ2-separable.

Then, there would exist a nonzero vector w = (w1, w2, w3, w4) ∈ R4 such that

〈φ2(x, y), w〉 > 0, for all (x, y) ∈ X+
3 ,

〈φ2(x, y), w〉 < 0, for all (x, y) ∈ X−3 ,

that is

w1 + w2 + w4 > 0, (15)
w1 − w2 + w4 > 0, (16)
w1 + w3 + w4 < 0, (17)
w1 − w3 + w4 < 0. (18)

Adding (15) and (16), we obtain w1 + w4 > 0, while adding (17) and (18) yields
w1 + w4 < 0, which establishes the contradiction.
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