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Problem 1

(a) One candidate for Ψ is

Ψ(x) = ρ(x)− 0.001ρ(−x)

=
(
1 − 0.001

)
◦ ρ ◦

((
1
−1

)
x

)
, x ∈ R.

This network satisfies W(Ψ) = 2, B(Ψ) = 1, and M(Ψ) = 4.

(b) For n ∈ N, L(Sn) = n, W (Sn) = 1, and B(Sn) = 2. By direct computation we get
S1(x) = 2x, S2(x) = 2ρ(2x) = 4ρ(x). We prove by induction that Sm(x) = 2mρ(x),
for all x ∈ R and m ≥ 2. The base case S2(x) = 4ρ(x) was already established. It
remains to prove the induction step. To this end, suppose that for some integer
m ≥ 2, we have Sm = 2mρ(x), for all x ∈ R. It then follows from the definition of
Sn, n ≥ 2, in the problem statement that Sm+1(x) = 2 ρ(Sm(x)) = 2 ρ(2mρ(x)) =
2m+1ρ(x), for all x ∈ R. This establishes the induction step.

(c) For n ∈ N∪{0}, L(Φn) = 2, W(Φn) = 5, B(Φn) = 2n+1, and M (Φn) = 14. The plot
of Φ0(x) is given below.
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Figure 1: Φ0(x).

(d) Let n ∈ N. We have

Φn(x) = 2n ρ(x+ 2)− 2n+1 ρ(x+ 1) + 2n+1 ρ(x)− 2n+1 ρ(x− 1) + 2n ρ(x− 2)

= 2n(ρ(x+ 2)− 2 ρ(x+ 1) + 2 ρ(x)− 2 ρ(x− 1) + ρ(x− 2))

= 2n Φ0(x), x ∈ R.

1



(e) We have, for x ∈ R,

Φn(x) = 2nΦ0(x), (1)
= 2n (ρ(x+ 2)− 2ρ(x+ 1) + 2ρ(x)− 2ρ(x− 1) + ρ(x− 2)) (2)

=
2n∑
i=1

(ρ(x+ 2)− 2ρ(x+ 1) + 2ρ(x)− 2ρ(x− 1) + ρ(x− 2)) , (3)

where (1) follows from the result of subproblem (d), and in (3) we replaced
multiplication by 2n by summing 2n copies of the same term. Using the defi-
nition of ReLU networks in the Handout, we now see that Φn can be realized
as a single-hidden-layer ReLU network Rn with L(Rn) = 2, B(Rn) = 2, and
W(Rn) = 2n × 5 = 2n5.

(f) We first show that (Sn ◦ Φ0)(x) = (Φn)(x), for all x ∈ R and n ∈ N. Suppose
first that n = 1. For x ∈ R, Sn(Φ0(x)) = 2Φ0(x) = Φ1(x), where the last equality
follows from the result of subproblem (d). Now let n ∈ N with n ≥ 2. Then, for
x ∈ R, Sn(Φ0(x)) = 2nρ(Φ0(x)) = 2n Φ0(x) = Φn(x), for all x ∈ R, where the first
equality is by the result from subproblem (b), the second follows from Φ0(x) ≥ 0,
∀x ∈ R, and the third is by the result from subproblem (d).

Using Lemma 1 in the Handout, Sn ◦ Φ0 can be realized by a ReLU network Tn

with L (Tn) = L(Sn) + L(Φ0) = n + 2, W(Tn) ≤ max {2,W(Sn),W(Φ0)} = 5, and
B(Tn) = max {B(Sn),B(Φ0)} = 2.
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Problem 2

(a) (i) An ε-covering of the compact set C ⊆ X with respect to the metric ρ is a
set {x1, . . . , xN} ⊂ C such that for each x ∈ C, there exists an i ∈ {1, . . . , N}
so that ρ(x, xi) ≤ ε. The ε-covering number N(ε; C, ρ) is the cardinality of a
smallest ε-covering of C.

(ii) An ε-packing of a compact set C ⊆ X with respect to the metric ρ is a set
{x1, . . . , xN} ⊂ C such that ρ(xi, xj) > ε, for all distinct i, j. The ε-packing
number M(ε; C, ρ) is the cardinality of a largest ε-packing of C.

(iii) N(2ε; C, ρ) ≤ M(2ε; C, ρ) ≤ N(ε; C, ρ) ≤ M(ε; C, ρ).
(iv) Suppose that {x1, . . . , xn} is an ε-packing of D such that n = M(ε;D, ρ). By

definition, ρ(xi, xj) > ε, for all i, j ∈ {1, . . . , n} with i ̸= j. This together with
D ⊂ C, implies that {x1, . . . , xn} ⊂ C and is an ε-packing of C, and therefore
M(ε;D, ρ) = n ≤ M(ε; C, ρ) by definition of the packing number of C.

(b) (i) For every fθ ∈ F , we can find a θi in the set {θ0, . . . , θT , θT+1} such that
|θ − θi| ≤ ε

4
. We then have

∥fθi − fθ∥L1 =

∫ 1

0

| sin(2π(x− θi))− sin(2π(x− θ))| dx (4)

=

∫ 1

0

∣∣∣∣2 cos(2π(x− θ + θi
2

))
sin(π(θ − θi))

∣∣∣∣ dx (5)

=2| sin(π(θ − θi))|
∫ 1

0

∣∣∣∣cos(2π(x− θ + θi
2

))∣∣∣∣ dx (6)

≤ 2|π(θ − θi)|
2

π
(7)

≤ ε, (8)

where (5) and (7) follow from the Hint, and (8) is a consequence of |θ − θi| ≤
ε
4
. We can therefore conclude that the set {fθ0 , . . . , fθT , fθT+1

} constitutes an ε-
covering of F with respect to the metric ρ. An upper bound on the covering
number is hence obtained according to N(ε;F , ρ) ≤ T + 2 ≤ 2

ε
+ 2.

(ii) We construct an explicit packing as follows. Set T =
⌊
1
ε

⌋
, and for i =

0, 1, . . . , T , define θi =
εi
2

. Note that for all i, j with i ̸=j, we have

∥fθi − fθj∥L1 =

∫ 1

0

| sin(2π(x− θi))− sin(2π(x− θj))|dx (9)

=

∫ 1

0

∣∣∣∣2 cos(2π(x− θj + θi
2

))
sin(π(θj − θi))

∣∣∣∣dx (10)

= 2 | sin(π(θj − θi))|
∫ 1

0

∣∣∣∣cos(2π(x− θj + θi
2

))∣∣∣∣dx (11)

= 2 | sin(π(θj − θi))|
2

π
(12)

≥ 2
2

π
|π(θj − θi)|

2

π
(13)

=
8

π
|θj − θi|, (14)
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where (10) and (12) follow from the Hint in subproblem (i), (13) from the
Hint in this subproblem with |π(θj − θi)| ≤ |π εT

2
| ≤ π

2
. Since |θj − θi| ≥ ε

2
for

all i, j with i ̸= j, we have ∥fθi − fθj∥L1 ≥ 4
π
ε > ε. We can therefore conclude

that {fθ0 , . . . , fθT } constitutes an ε-packing and the corresponding packing
number satisfies M(ε;F , ρ) ≥ T + 1 ≥ 1

ε
. Hence,

log2 M(ε;F , ρ) ≥ log2

(
1

ε

)
,

and the solution is concluded by taking c := 1.
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Problem 3

(a) The dichotomy
{
X+

1 , X
−
1

}
is said to be homogeneously linearly separable if there

exists a nonzero vector w1 ∈ Rd such that

⟨x,w1⟩ > 0, for all x ∈ X+
1 ,

⟨x,w1⟩ < 0, for all x ∈ X−
1 ,

and it is said to be ϕ-separable if there exists a nonzero vector w2 ∈ Rm such that

⟨ϕ(x), w2⟩ > 0, for all x ∈ X+
1 ,

⟨ϕ(x), w2⟩ < 0, for all x ∈ X−
1 .

(b) The number of homogeneously linearly separable dichotomies is given by
1∑

k=0

2

(
2

k

)
= 2 + 4 = 6.

These 6 dichotomies {X+
2 , X

−
2 } of X2 together with the corresponding w-vectors

are as follows

{X+
2 = {(1, 0), (−1,−1)}, X−

2 = {(0, 1)} }, w = (1,−2);

{X+
2 = {(0, 1)}, X−

2 = {(1, 0), (−1,−1)}}, w = (−1, 2);

{X+
2 = {(0, 1), (−1,−1)}, X−

2 = {(1, 0)} }, w = (−2, 1);

{X+
2 = {(1, 0)}, X−

2 = {(0, 1), (−1,−1)}}, w = (2,−1);

{X+
2 = {(0, 1), (1, 0)}, X−

2 = {(−1,−1)} }, w = (1, 1);

{X+
2 = {(−1,−1)}, X−

2 = {(0, 1), (1, 0)} }, w = (−1,−1).

(c) Suppose for the sake of contradiction that {X+
3 , X

−
3 } is ϕ1-separable. Then, there

exists a vector w = (u, v) such that

⟨ϕ1(x), (u, v)⟩ > 0, for all x ∈ X+
3 ,

⟨ϕ1(x), (u, v)⟩ < 0, for all x ∈ X−
3 ,

which amounts to

u + v > 0, (15)
3u + v > 0, (16)
2u + v < 0, (17)
4u + v < 0. (18)

It now follows from (15) and (17) that u < 0, while (17) and (16) taken together
imply u > 0, which establishes the desired contradiction.

(d) Let Φ1(x) := 2ρ(x)− 4ρ(x− 1) + 4ρ(x− 2)− 4ρ(x− 3)− 1, x ∈ R, see Fig. 2 for a
plot of Φ1 on [0, 4]. It follows from the definition in the Handout that L(Φ1) = 2.
Further, we get by direct inspection Φ (1) = Φ (3) = 1, Φ (2) = Φ (4) = −1. Let
w = 1. It then follows that

⟨Φ1(x), w⟩ = 1 > 0, for all x ∈ X+
3 ,

⟨Φ1(x), w⟩ =− 1 < 0, for all x ∈ X−
3 ,

which establishes the Φ1-separability of
{
X+

3 , X
−
3

}
.
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Figure 2: Φ1(x) on [0, 4].

(e) No such ReLU network exists. To see this, assume by way of contradiction that Φ2

is such a ReLU network. If {{1, 2} , {3, 4}} were Φ2-separable, there would exist a
w1 ∈ R such that Φ2(1)×w1 > 0 and Φ2(2)×w1 > 0, which implies that Φ2(1) and
Φ2(2) have the same sign. Next, {{1} , {2, 3, 4}} being Φ2-separable would imply
the existence of a w2 ∈ R such that Φ2(1) × w1 > 0 and Φ2(2) × w1 < 0, which
would imply that Φ(1) and Φ(2) have different signs. This establishes the desired
contradiction.
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Problem 4

(a) We have

|f |Lip = sup
x,y∈Rd

x ̸=y

∥f(x)− f(y)∥∞
∥x− y∥∞

(19)

= sup
x,y∈Rd

x ̸=y

∥A(x− y)∥∞
∥x− y∥∞

(20)

≤ d ∥A∥∞ ∥x− y∥∞
∥x− y∥∞

(21)

= d ∥A∥∞ , (22)

where (21) follows from the inequality in the Hint.

(b) For all x, y ∈ Rd with x ̸= y, we have

∥Φ1(x)− Φ1(y)∥∞ = ∥A2 ρ(A1x)− A2 ρ(A1y)∥∞ (23)
≤ k ∥A2∥∞ ∥ρ(A1x)− ρ(A1x)∥ (24)
≤ k ∥A2∥∞ ∥A1x− A1y∥∞ (25)
≤ k ∥A2∥∞ d ∥A1∥∞ ∥x− y∥∞ , (26)

where (24) and (26) follow from the Hint in subproblem (a), and (25) is by the
inequality in the Hint to subproblem (b).

We therefore have

|Φ1|Lip = sup
x,y∈Rd

x ̸=y

∥Φ1(x)− Φ1(y)∥
∥x− y∥∞

≤ sup
x,y∈Rd

x ̸=y

kd ∥A2∥∞ ∥A1∥∞ ∥x− y∥∞
∥x− y∥∞

= dk ∥A1∥∞ ∥A2∥∞ .

(c) On the one hand, we have

|Ψn|Lip = sup
x,y∈R
x ̸=y

|Ψn(x)−Ψn(y)|
|x− y|

≥ |Ψn(1)−Ψn(0)|
|1− 0|

=
2n − 0

1− 0

=2n.

(27)

On the other hand, it follows by application of the result in subproblem (b) that

|Ψn|Lip ≤ W ∥A2∥∞ ∥A1∥∞ ≤ W (B(Ψn))
2 ≤ 4W. (28)

This upper bound together with the lower bound (27) yields 4W ≥ 2n, which
results in W ≥ 2n−2.
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(d) For all x, y ∈ Rd with x ̸= y, we have

∥Φ(x)− Φ(y)∥∞ (29)
= ∥An(ρ (An−1(. . . ρ (A1x) . . . )))− An(ρ (An−1(. . . ρ (A1y) . . . )))∥∞ (30)
≤ Nn−1 ∥An∥∞ ∥ρ (An−1(. . . ρ (A1x) . . . ))− ρ (An−1(. . . ρ (A1y) . . . ))∥∞ (31)
≤ Nn−1 ∥An∥∞ ∥An−1(. . . ρ (A1x) . . . )− An−1(. . . ρ (A1y) . . . )∥∞ (32)
≤ W(Φ)B(Φ) ∥An−1(. . . ρ (A1x) . . . )− An−1(. . . ρ (A1y) . . . )∥∞ (33)

...
≤ (W(Φ)B(Φ))n ∥x− y∥∞ , (34)

where (31) follows from the Hint in subproblem (a), (32) is by the Hint in sub-
problem (b), and in (33) we used Nn−1 ≤ W(Φ) and ∥An∥∞ ≤ B(Φ).
Therefore, we get

|Φ|Lip = sup
x,y∈Rd

x ̸=y

∥Φ(x)− Φ(y)∥∞
∥x− y∥∞

≤ sup
x,y∈Rd

x ̸=y

(W(Φ)B(Φ))n ∥x− y∥∞
∥x− y∥∞

=(W(Φ)B(Φ))n

as desired.
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