

Exam on Neural Network Theory February 11, 2022

Please note:

- Exam duration: 180 minutes
- Maximum number of points: 100
- You are not allowed to use any printed or handwritten material (i.e., books, lecture and discussion session notes, summaries), computers, tablets, smart phones or other electronic devices.
- Your solutions should be explained in detail and your handwriting needs to be clean and legible.
- Please do not use red or green pens. You may use pencils.
- Please note that the "ETH Zurich Ordinance on Disciplinary Measures" applies.

Before you start:

- 1. The problem statements consist of 6 pages including this page. Please verify that you have received all 6 pages.
- 2. Please fill in your name, student ID card number and sign below.
- 3. Please place your student ID card at the front of your desk so we can verify your identity.

During the exam:

- 4. For your solutions, please use only the empty sheets provided by us. Should you need additional sheets, please let us know.
- 5. Each problem consists of several subproblems. If you do not provide a solution to a subproblem, you may, whenever applicable, nonetheless assume its conclusion in the ensuing subproblems.

After the exam:

- 6. Please write your name on every solution sheet and prepare all sheets in a pile. All sheets, including those containing problem statements, must be handed in.
- 7. Please clean up your desk and remain seated and silent until you are allowed to leave the room in a staggered manner row by row.
- 8. Please avoid crowding and leave the building by the most direct route.

Family name:	First name:
Student ID card No.:	
Signature:	

Problem 1 (25 points)

For $a, b \in \mathbb{R}$ with a < b, let $\mathbb{I}_{[a,b)} \colon \mathbb{R} \to \{0,1\}$ denote the indicator function of the interval [a,b), defined as

$$\mathbb{I}_{[a,b)}(x) := \begin{cases} 1, & x \in [a,b) \\ 0, & x \notin [a,b) \end{cases}.$$

The goal of this problem is to approximate indicator functions by ReLU networks.

(a) (2 points) For $t \in \mathbb{R}$, let $H_t \colon \mathbb{R} \to \{0,1\}$ denote the Heaviside function with jump at t, given by

$$H_t(x) := \begin{cases} 0, & x < t \\ 1, & x \ge t \end{cases}, \qquad x \in \mathbb{R}.$$

Let $a, b \in \mathbb{R}$ with a < b. Write $\mathbb{I}_{[a,b)}$ as a linear combination of Heaviside functions.

(b) (5 points) For $t \in \mathbb{R}$, $\ell \in \mathbb{N}$, let $G_{t,\ell} \colon \mathbb{R} \to [0,1]$ be given by

$$G_{t,\ell}(x) := \begin{cases} 0, & x \le t - 2^{-\ell} \\ 2^{\ell}(x - (t - 2^{-\ell})), & t - 2^{-\ell} < x \le t \\ 1, & x > t \end{cases}$$

Realize $G_{t,\ell}$ as a ReLU neural network $\Phi_{t,\ell}$ with $\mathcal{L}(\Phi_{t,\ell}) = 2$. Specify $\Phi_{t,\ell}$, $\mathcal{W}(\Phi_{t,\ell})$, $\mathcal{M}(\Phi_{t,\ell})$, and $\mathcal{B}(\Phi_{t,\ell})$.

(c) (8 points) Let $t \in \mathbb{R}$ and let $\ell \in \mathbb{N}$. Show that

$$||G_{t,\ell} - H_t||_{L^2(\mathbb{R})} \le \frac{1}{\sqrt{3}} 2^{-\frac{\ell}{2}}.$$

(d) (4 points) Let $a,b \in \mathbb{R}$ with a < b and $\ell \in \mathbb{N}$. Use Lemma 1 in the Handout to establish the existence of a ReLU network $\Phi_{a,b,\ell} \in \mathcal{N}_{1,1}$ satisfying

$$\|\Phi_{a,b,\ell} - \mathbb{I}_{[a,b)}\|_{L^2(\mathbb{R})} \le \frac{2}{\sqrt{3}} 2^{-\frac{\ell}{2}}$$

Hint: Specify $\Phi_{a,b,\ell}$ in terms of networks $\Phi_{t,\ell}$ as derived in subproblem (b).

(e) (6 points) Let $a, b \in \mathbb{R}$ with a < b and $\varepsilon \in (0, \frac{1}{2})$. Find a ReLU network $\Psi_{a,b,\varepsilon}$ satisfying

$$\|\Psi_{a,b,\varepsilon} - \mathbb{I}_{[a,b)}\|_{L^2(\mathbb{R})} \le \varepsilon.$$

Specify $\Psi_{a,b,\varepsilon}$, $\mathcal{L}(\Psi_{a,b,\varepsilon})$, $\mathcal{B}(\Psi_{a,b,\varepsilon})$, and $\mathcal{W}(\Psi_{a,b,\varepsilon})$ as well as an upper bound on $\mathcal{M}(\Psi_{a,b,\varepsilon})$.

Hint: Make use of the result in subproblem (c) and Lemma 1 in the Handout and take ℓ to depend on ε .

2

Problem 2 (25 points)

For $a, b \in [0, 1)$ with a < b, let $\mathbb{I}_{[a,b)} \colon [0, 1) \to \{0, 1\}$ denote the indicator function of the interval [a, b), defined as

$$\mathbb{I}_{[a,b)}(x) := \begin{cases} 1, & x \in [a,b) \\ 0, & x \notin [a,b) \end{cases}.$$

Note that here the indicator function is defined on the domain [0,1). For $k \in \mathbb{N}$, let

$$S_k := \left\{ h_c = \sum_{j=1}^k c_j \mathbb{I}_{\left[\frac{j-1}{k}, \frac{j}{k}\right)} \colon c = (c_1, \dots, c_k) \in [0, 1]^k \right\}$$

denote the set of step functions on [0,1) with k steps of length $\frac{1}{k}$ and height in [0,1].

- (a) (4 points) Let $k \in \mathbb{N}$ and $c^1, c^2 \in [0, 1]^k$. Show that $\|h_{c^1} h_{c^2}\|_{L^{\infty}([0, 1))} = \|c^1 c^2\|_{\infty}$.
- (b) (8 points) Let k=2, $\varepsilon=\frac{1}{3}$, and $X=\{h_{c^1},h_{c^2},h_{c^3},h_{c^4}\}$ with $c^1=(\frac{1}{3},\frac{1}{3}),\quad c^2=(\frac{1}{3},\frac{2}{3}),\quad c^3=(\frac{2}{3},\frac{1}{3}),\quad c^4=(\frac{2}{3},\frac{2}{3}).$

Show that X is a $\frac{1}{3}$ -covering of S_2 with respect to the metric $\rho_{\infty}(f,g) := \|f - g\|_{L^{\infty}([0,1))}$.

- (c) (8 points) Show that $N(\frac{1}{3}; S_2, \rho_{\infty}) = 4$. *Hint:* You may use, without proof, that $M(\frac{2}{3}; S_2, \rho_{\infty}) \leq N(\frac{1}{3}; S_2, \rho_{\infty})$.
- (d) (5 points) Let $k \in \mathbb{N}$. Show that $N(\frac{1}{2}; S_k, \rho_{\infty}) = 1$.

Problem 3 (25 points)

- (a) (4 points) Let X_1 be a finite subset of \mathbb{R}^d , $d \in \mathbb{N}$, let $\{X_1^+, X_1^-\}$ be a dichotomy of X_1 , and consider the mapping $\phi : \mathbb{R}^d \mapsto \mathbb{R}^m$, $m \in \mathbb{N}$. State the definition for the dichotomy $\{X_1^+, X_1^-\}$ to be homogeneously linearly separable and the definition for it to be ϕ -separable.
- (b) (3 points) Consider $X_2 = \{-3\pi/2, -\pi/2, \pi/2, 3\pi/2\}$. Is the dichotomy

$$\{X_2^+ = \{-3\pi/2, -\pi/2\}, X_2^- = \{\pi/2, 3\pi/2\}\},\$$

homogeneously linearly separable? Justify your answer.

- (c) (8 points) Let $\phi_1(x) = (\cos(x), \sin(x))$. Show that the dichotomy $\{X_2^+, X_2^-\}$ from subproblem (b) is not ϕ_1 -separable and find a function $f : \mathbb{R} \to \mathbb{R}$ such that $\{X_2^+, X_2^-\}$ is ϕ_2 -separable with $\phi_2(x) = (\cos(x), \sin(x), f(x))$.
- (d) (5 points) Consider the class of functions

$$\mathcal{F} := \left\{ f : \mathbb{R}^3 \mapsto \{0, 1\} : f(x_1, x_2, x_3) = \operatorname{sgn}\left(\sum_{i=1}^3 a_i x_i\right), (a_1, a_2, a_3) \in \mathbb{R}^3 \right\},\,$$

where sgn : $\mathbb{R} \mapsto \{0,1\}$ is given by

$$\operatorname{sgn}(x) := \begin{cases} 1, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Find a subset of \mathbb{R}^3 with three elements that can be shattered by \mathcal{F} , and justify your answer.

Hint: Please see Definition 6 in the Handout for the definition of shattering. You can use the equivalent definition of shattering effected by Lemma 2 in the Handout.

(e) (5 points) Let $d \in \mathbb{N}$ and \mathcal{G} be a class of $\{0,1\}$ -valued functions on \mathbb{R}^d . Suppose that the growth function of \mathcal{G} satisfies $\Pi_{\mathcal{G}}(m) \leq 4m^2$, for all $m \in \mathbb{N}$. Show that $VC(\mathcal{G}) \leq 8$.

Hint: Please see Definitions 5 and 6 in the Handout for the definition of the growth function and of VC dimension, respectively.

Problem 4 (25 points)

Fix $W \in \mathbb{N}$ with $W \geq 3$. Let

$$\mathcal{F}(W) = \{ \Phi : \mathbb{R} \mapsto \mathbb{R} : \Phi \text{ is a ReLU network with } \mathcal{L}(\Phi) = 2, \mathcal{W}(\Phi) \leq W \}$$

be the class of single-hidden-layer ReLU networks with width at most W, and let

$$\operatorname{sgn}(\mathcal{F}(W)) = \{g : \mathbb{R} \mapsto \{0, 1\} : \text{ there exists } \Phi \in \mathcal{F}(W)$$

 $\operatorname{such that } g(x) = \operatorname{sgn}(\Phi(x)), x \in \mathbb{R}\},$

where $\operatorname{sgn}: \mathbb{R} \mapsto \{0,1\}$ is given by

$$\operatorname{sgn}(x) := \begin{cases} 1, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

In this problem, we study the VC dimension of the class $sgn(\mathcal{F}(W))$.

(a) (4 points) Show that every network Φ in $\mathcal{F}(W)$ can be written as

$$\sum_{i=1}^{w} a_i \rho(s_i(x - b_i)) + c, \ x \in \mathbb{R}, \tag{1}$$

for some $w \in \mathbb{N}$, $a_1, \ldots, a_w, b_1, \ldots, b_w, c \in \mathbb{R}$, $s_1, \ldots, s_w \in \{-1, 1\}$ such that $w \leq W$ and $b_1 \leq b_2 \leq b_3 \leq \cdots \leq b_w$. Here, ρ is the ReLU activation function $\rho \colon \mathbb{R} \to \mathbb{R}$ given by $\rho(x) := \max(x, 0), x \in \mathbb{R}$.

- (b) (4 points) A function $f: \mathbb{R} \mapsto \mathbb{R}$ is said to be affine on a set $X \subset \mathbb{R}$ if there exist $u, v \in \mathbb{R}$ such that f(x) = ux + v, for all $x \in X$. Suppose that a network $\Phi \in \mathcal{F}(W)$ is represented in the form (1) according to subproblem (a). Show that Φ is affine on each of the (w+1) intervals $(-\infty,b_1]$, $[b_1,b_2]$, $[b_2,b_3]$, ..., $[b_{w-1},b_w]$, and $[b_w,\infty)$.
- (c) (4 points) Suppose that x_1, x_2, x_3 are real numbers with $x_1 \le x_2 \le x_3$ and $f : \mathbb{R} \mapsto \mathbb{R}$ is affine on $[x_1, x_3]$. Show that if $\operatorname{sgn}(f(x_1)) = \operatorname{sgn}(f(x_3))$, then necessarily $\operatorname{sgn}(f(x_1)) = \operatorname{sgn}(f(x_2)) = \operatorname{sgn}(f(x_3))$.
- (d) (4 points) Show that for all $n \in \mathbb{N}$ and $(x_i)_{i=1}^n \in \mathbb{R}^n$ with $n \geq 2W + 3$ and $x_1 < x_2 < \cdots < x_n$, there does not exist a ReLU network $\Phi \in \mathcal{F}(W)$ such that

$$sgn(\Phi(x_i)) = \begin{cases} 0, & \text{if } i \text{ is odd,} \\ 1, & \text{if } i \text{ is even,} \end{cases}$$

for i = 1, ..., n.

Hint: Use the results from subproblems (a), (b), (c) and the pigeonhole principle in Lemma 3 in the Handout.

(e) (2 points) Use the result from subproblem (d) to show that

$$VC(sgn(\mathcal{F}(W))) \le 2W + 2.$$

(f) (7 points) Show that for every $(z_i)_{i=1}^W \in \mathbb{R}^W$, there exists a ReLU network $\Phi \in \mathcal{F}(W)$ such that $\Phi(i) = z_i$, for $i = 1, \dots, W$. Then, use this result to establish that $VC(\operatorname{sgn}(\mathcal{F}(W))) \geq W$.

Hint: Work with expression (1) with w = W, $s_i = 1$, and $b_i = i$, for i = 1, ..., W. You can get partial credit by solving this subproblem for the special case W = 3.

Handout for Exam on Neural Network Theory February 11, 2022

Definition 1 (Norms). For $n \in \mathbb{N}$, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, we define

$$||x||_{\infty} := \max_{j \in \{1,\dots,n\}} |x_j|.$$

For $X, Y \subseteq \mathbb{R}$, $f: X \to Y$, we define

$$||f||_{L^2(X)} := \left(\int_X |f(x)|^2 dx\right)^{\frac{1}{2}}$$

and

$$||f||_{L^{\infty}(X)} := \sup_{x \in X} |f(x)|.$$

Definition 2 (Covering and covering number). Let (\mathcal{X}, ρ) be a metric space. An ε -covering of a compact set $\mathcal{C} \subseteq \mathcal{X}$ with respect to the metric ρ is a set $\{x_1, \ldots, x_N\} \subseteq \mathcal{C}$ such that for each $x \in \mathcal{C}$, there exists an $i \in \{1, \ldots, N\}$ so that $\rho(x, x_i) \leq \varepsilon$. The ε -covering number $N(\varepsilon; \mathcal{C}, \rho)$ is the cardinality of the smallest ε -covering.

Definition 3 (Packing and packing number). Let (\mathcal{X}, ρ) be a metric space. An ε -packing of a compact set $\mathcal{C} \subseteq \mathcal{X}$ with respect to the metric ρ is a set $\{x_1, \ldots, x_N\} \subseteq \mathcal{C}$ such that $\rho(x_i, x_j) > \varepsilon$, for all distinct i, j. The ε -packing number $M(\varepsilon; \mathcal{X}, \rho)$ is the cardinality of the largest ε -packing.

Definition 4 (ReLU network). Let $L \in \mathbb{N}$ and $N_0, N_1, \dots, N_L \in \mathbb{N}$. A ReLU neural network Φ is a map $\Phi : \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ given by

$$\Phi = \begin{cases} W_1, & L = 1, \\ W_2 \circ \rho \circ W_1, & L = 2, \\ W_L \circ \rho \circ W_{L-1} \circ \rho \circ \cdots \circ \rho \circ W_1, & L \ge 3, \end{cases}$$

where, for $\ell \in \{1, 2, \dots, L\}$, $W_\ell \colon \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_\ell}$, $W_\ell(x) := A_\ell x + b_\ell$ are the associated affine transformations with matrices $A_\ell \in \mathbb{R}^{N_\ell \times N_{\ell-1}}$ and (bias) vectors $b_\ell \in \mathbb{R}^{N_\ell}$, and the ReLU activation function $\rho \colon \mathbb{R} \to \mathbb{R}$, $\rho(x) := \max(x, 0)$ acts component-wise, i.e., $\rho(x_1, \dots, x_N) := (\rho(x_1), \dots, \rho(x_N))$. We denote by $\mathcal{N}_{d,d'}$ the set of all ReLU networks with input dimension $N_0 = d$ and output dimension $N_L = d'$. Moreover, we define the following quantities related to the notion of size of the ReLU network Φ :

- the *connectivity* $\mathcal{M}(\Phi)$ is the total number of non-zero entries in the matrices A_{ℓ} , $\ell \in \{1, 2, ..., L\}$, and the vectors b_{ℓ} , $\ell \in \{1, 2, ..., L\}$,
- depth $\mathcal{L}(\Phi) := L$,
- width $W(\Phi) := \max_{\ell=0,\dots,L} N_{\ell}$,
- weight magnitude $\mathcal{B}(\Phi) := \max_{\ell=1,\dots,L} \max\{\|A_{\ell}\|_{\infty}, \|b_{\ell}\|_{\infty}\}.$

Lemma 1. Let $c_1, c_2 \in \mathbb{R}$, and $\Phi_1, \Phi_2 \in \mathcal{N}_{1,1}$ with $\mathcal{L}(\Phi_1) = \mathcal{L}(\Phi_2)$. There exists a network $\Phi \in \mathcal{N}_{1,1}$ satisfying

$$\Phi(x) = c_1 \Phi_1(x) + c_2 \Phi_2(x)$$
, for all $x \in \mathbb{R}$,

 $\mathcal{L}(\Phi) = \mathcal{L}(\Phi_1)$, $\mathcal{B}(\Phi) = \max\{|c_1|\mathcal{B}(\Phi_1), |c_2|\mathcal{B}(\Phi_2)\}$, $\mathcal{W}(\Phi) \leq \mathcal{W}(\Phi_1) + \mathcal{W}(\Phi_2)$, and $\mathcal{M}(\Phi) \leq \mathcal{M}(\Phi_1) + \mathcal{M}(\Phi_2)$.

Definition 5 (Growth function). Let \mathcal{F} be a class of $\{0,1\}$ -valued functions on a domain \mathcal{X} . We define the growth function of \mathcal{F} , $\Pi_{\mathcal{F}} : \mathbb{N} \to \mathbb{N}$, as

$$\Pi_{\mathcal{F}}(N) = \max\{|\mathcal{F}_{|X}| : X \subseteq \mathcal{X}, |X| = N\},\$$

where $\mathcal{F}_{|X} = \{f|_X : f \in \mathcal{F}\}$, for $X \subset \mathcal{X}$, and $f|_X : X \mapsto \{0,1\}$ is the restriction of f to X, given by $f|_X(x) = f(x)$, for all $x \in X$.

Definition 6 (Shattering and VC dimension). Let \mathcal{F} be a class of $\{0,1\}$ -valued functions on a domain \mathcal{X} . Suppose that $X = \{x_1, x_2, \dots, x_N\}$ is a subset of \mathcal{X} . We say that \mathcal{F} shatters X if $|\mathcal{F}|_X| = 2^N$. The VC dimension of \mathcal{F} is the size of the largest subset of \mathcal{X} shattered by \mathcal{F} , or, equivalently, the largest value of N for which the growth function $\Pi_{\mathcal{F}}(N)$ equals 2^N . Formally,

$$VC(\mathcal{F}) = \max \{ |X| : X \subset \mathcal{X}, \mathcal{F} \text{ shatters } X \}$$
$$= \max \{ N \in \mathbb{N} : \Pi_{\mathcal{F}}(N) = 2^{N} \}.$$

Lemma 2 (Equivalent definition of shattering). Let \mathcal{F} be a class of $\{0,1\}$ -valued functions on a domain \mathcal{X} . Suppose that $X = \{x_1, x_2, \dots, x_N\}$ is a subset of \mathcal{X} . The set X is shattered by \mathcal{F} if and only if for every $(y_i)_{i=1}^N \in \{0,1\}^N$, there exists a function $f \in \mathcal{F}$ such that $f(x_i) = y_i$, $i = 1, \dots, N$.

Lemma 3 (The pigeonhole principle). Suppose X, S_1, \ldots, S_n are sets such that $X \subset \bigcup_{i=1}^n S_i$. Then, there exists an $i \in \{1, \ldots, n\}$ so that $|X \cap S_i| \geq \frac{|X|}{n}$.