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Problem 1
(a) Ia,b - Ha - Hb

(b) @) = 2ple — (t—27)) — 2p(a — 1),
W(®,) = 2, B(®,) = max{2%, [¢], [t — 27|}, and

5 te{0,27%
6, else '

M(Dyy) = {

(c) Observe that
t
G = Hill = [ 1Gealo) — Hilo) o
t—2—

_ /_ 2z — (t — 279)Pdx

Taking square roots now yields the desired result.

(d) Let ®,,and @, , be the networks obtained by setting ¢t = a and ¢t = b, respectively,
in the network ®,, from subproblem (b). Take, in accordance with Lemma 1 in
the Handout, &,/ to be the network satisfying @, ¢(x) := ®,4(x) — Pp¢(x), for
all z € R. Using the results from subproblems (a) and (c), it follows that

1 Pabe — Lapll 2wy = [[(Pay — Poe) — (Ha — Hy)|| 12(r)
= [(Gay — Gop) — (Ha — Hy)|| r2(w)
< |G — Holl2w) + ||Gre — Hy | 2wy
< 2973,
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e) Take W, . = P, 4 for £, = [2log,(Z%c1)] with ®,,,. as defined in subproblem
,0, ,0,te 2 V3 ;0,te p
(d). Consequently, we have
e
H\Ija,b,s - a,bHLQ(R) = Hq)a,b,ég - [a,bHLQ(]R) S %277 S £.

Application of Lemma 1 in the Handout yields

£<\Ija,b,€) =2

B(V,p.) = max{2%, |al,|b], |a — 27|, |b — 27|}

M(Wupe) < 12.



Problem 2
(a) It holds that

= max |cj1 —c?
=1,k

Ay

|t — hez|| Lo (o,1)) = | =lc! = ]|

Le>=([0,1))

(b) First, note that, for every = € [0, 1], we have |z — 3|
Now, let h € Sy. There exists ¢ € [0, 1]* such that
exists i € {1,2,3,4} so that

|h — he

or |z — 2| < 3 (or both).

<1
=3
h = h.. Consequently, there

roo((0.1)) = e = heill (o)) = e — ciHOO < %

(C) LetY = {hel,hez,hes,he4} with e! = (l l), e? = (%, %), ed = (g,

878
Fori,j € {1,2,3,4} with i # j, we have

),and e* = (I, 1),

i j 3
lhei = heillLoeoay) = lle" — €'llse = |£ — 3 = 1> 2,

This implies that Y is a 2-packing of S,. Combining the hint with the result from
subproblem (b) completes the proof.

(d) Forc:=(1,...,3) € [0,1]F, we get he(z) = 3, forall z € [0,1). As max,ejo) |z —
1| < 3, the singleton {h.} is a i-covering of S) with respect to the metric ps.

The claim now follows by noting that an empty set cannot be a covering for a
non-empty set.



Problem 3

(a) The dichotomy { X", X[ } is said to be homogeneously linearly separable if there
exists a nonzero vector w; € R? such that

(w,wy) >0, forallz € X,
(x,wy) <0, forallz € X,

and it is said to be ¢-separable if there exists a nonzero vector w, € R™ such that
(p(x),wy) >0, forall x € X,
(p(x),wy) <0, forallz € X, .

(b) The dichotomy is homogeneously linearly separable. Let w = —1. Then (z, w) >
Oforallz € XJ7 = {-3r/2,—7/2}, and (z,w) < O forall z € X; = {r/2,37/2}.

(c) Suppose, for the sake of contradiction, that { X3, X, } is ¢;-separable. Then, there
exists a nonzero vector w = (u, v) such that

(p1(x), (u,v)) >0, forallz € X,
(¢ (), (u,v)) <0, forallz € X5,

which amounts to

<¢1(_37T/2)’ (u7 U)) = v>0, (1)

<¢1(_7T/2)7 (uv U)) =—v> 07 (2)

<¢1(7T/2)’ (uv U)) = v<0, 3)

<¢1<37T/2)7 (u7 U)) =—v<0. 4)

Relations (1) and (3) can not hold simultaneously, which establishes the desired

contradiction.

Let f(z) = x, + € R, and hence ¢, = (cos(z),sin(z),x), = € R, and let w =
(0,0, —1). Then, we have

<¢2(_37T/2)7 w) = 37?/2 > 07 (5)

(fa(=7/2), w) = 7/2 >0, (6)

<¢2(7T/2)7 w> = - 7‘-/2 <0, ()

(92(37/2), w) = =3m/2 <0, ®)

and therefore the dichotomy {X, = {—37/2, —7/2}, X5 = {7/2,37/2}} is ¢o-

separable.

(d) Letz; = (1,0,0), zo = (0,1,0), z3 = (0,0,1), and set X = {z1, 22, z3}. Then, for
every (y1,2,y3) € {0,1}?, there exists an f € F such that

f(xz) = Yi, 1= 17 2737

namely f(z1, 2, 23) = sgn(320, (2y; — 1)z), (21, 22, 23) € R3. It therefore follows
from Lemma 2 in the Handout that F shatters X.
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(e) Suppose N € N such that IIg(N) = 2. We have 2V = TIg(N) < 4N?, where
the inequality is by the assumption Ilg(m) < 4m?, for all m € N. It follows that
N—-2-2log,(N) <0. Letg(z) = x—2—2log,(z). We have ¢g(8) = 8—2—21log,(8) =
0, and

9@ =1- "1 >
for all = > 8. It hence follows that g is strictly increasing on [8, o), and g(z) > 0,
forall x € (8,00). Since g(N) < 0, we must have N ¢ (8,00),i.e., N < 8. Then, by

the definition of VC dimension,

VC(G) = max{N € N: IIg(N) =2V} < 8.



Problem 4

(a)

(b)

(©)

(d)

Suppose that & € F(W). By definition, ® = W5 o p o W, for some W;(z) =
(di,....,d)Tx+ (e1,...,e,)T, . € R, and Wy(z) = (f1,..., fn)x + g, v € R, with
n < W. We have

P(z) = Z fip(dix +e) + g )
i=1

:':ani]dﬂp (é—i‘ (x— (—2—))) +| D finle)+g ], (10)

where in (10) we used p(uv) = up(v), forallu > 0and v € R. LetZ = {i €
{1,...,n}:d; #0},w=|Z|,and k : {1,...,w} — Z be an ordering of 7 such that

w
€h(i) : . _ _ (_ e _ (i)
(_K@>¢:1 is non-decreasing. Set a; = fi)|dk)|, bi = <_dk(i)> 5i = el € {0,1},

fori=1,...,w,and ¢ = Zl _____ n fip(e;) + g. Then, ®(x) can be written as
=0

Zalp (z— b)) +¢c, xeR, (11)

suchthatb1§b2§b3§~-§bw,andw§n§W.

Foralli € {1,...,w}, as the function x — a;p(s;(x — b;)) is affine on (—oo, b;] and
[b;, 00), and each of the intervals (—oo, by], [b1, b2], [b2, b3], - - -, [bw—1, bw], and [b,,, c0)
is contained in either (—o0, b;] or [b;, 00), we have that the function = +— a;p(s;(z —
b;)) is affine on each of the intervals (—oo, b1], [b1, bs], [b2, 03], ..., [bw_1,bw], and
[bw, 00). Since affinity is preserved under addition, the sum = — Y, a;p(s;(z —
b;)) + cis also affine on each of the intervals (—oo, b1, [b1, b2], [b2,b3), - .., [bw—1, bw],
and [b,,, 0).

Suppose first that sgn(f(z1)) = sgn(f(z3)) = 1, which implies f(z;) > 0 and
f(z3) > 0. Since f is affine on [z, x3), it attains its minimum and maximum on
[z1, x3] at its boundary points, i.e., at either x; or z3. This then implies f(x2) >
min{ f(x;), f(x3)} > 0 and hence sgn(f(z2)) = 1 = sgn(f(z1)) = sgn(f(z3)). The
statement for the case sgn(f(z1)) = sgn(f(x3)) = 0 can be established similarly.

Suppose, for the sake of contradiction, that there existsaset X = {z;,...,2,} CR
of n elements withn > 2W +3and z; < 25 < 23 < --- < 7, and a ReLU network
¢ € F(W) such that

(®(z,)) 0, ifiisodd,

Sgn i)) = .

& v 1, ifiiseven,

fori=1,...,n. According to the result from subproblem (a), ¢ can be written as
Zalp (z—b;))+¢c, xeR, (12)

where w < W, ay,...,au,b1,...,by,c € R, s1,...,8, € {—1,1} and b; < by <
. S bw. Let Sl = (—OO,bl], Sz = [bi—17bi]/ fori = 2,...,w, and Sw+1 = [bw,OO).
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Then X C UYY'S;. By the pigeonhole principle, there exists an interval S;, i €
{1,...,w + 1}, such that | X N S;| > q%ll > QV‘f,/jf’ > 2, which implies | X N S;| > 3.
We can hence assume, without loss of generality, that {z;, z;41,2;42} C S; for

some j € {1,...,n — 2}. We have
sgn(P(z;)) = sgn(P(z;42)) # sgn(P(z;41)) (13)

by assumption. According to subproblem (b), ¢ is affine on S; and therefore
affine on its subinterval [z;, z;;2]. Then, according to the result from subproblem
(c) with sgn(®(z;)) = sgn(P(x;12)), we must have sgn(®(z;)) = sgn(P(zj12)) =
sgn(®(x;41)), which contradicts (13).

Suppose, for the sake of contradiction, that VC(sgn(F(W))) > 2W + 3. Then,
by definition, there exists a subset X = {zy,...,z,}, withn > 2W + 3 and z; <
Ty < -+ < xp, such that sgn(F(WW)) shatters X. In particular, this together with
Lemma 2 in the Handout implies the existence of a network ¢ € F (V) such that,
fori=1,...,n,

0, ifiisodd,

1, ifiiseven.

sgn(®(z;)) = {

The existence of this ®, however, contradicts the result from subproblem (d).

For every z = (), € RY, we define @, : R s R as
B,(2) = 11— plo — 1) + plo —2)
F 3 s (i~ 1)~ 2000 )+ e~ i+ 1)
& ol — (W~ 1)) (1)
o+ (2 — 2 )plr— 1) + g(zi_l 2tz )ple — i)
owope ), (15)

such that ®,(i) = z;, for all i € {1,...,W}, according to expression (14), and
¢, € F(W), according to expression (15).

For every y = (y;)/¥; € {0,1}W, letz = ()}, = (2y; — 1)}¥,. We have that
x> sgn(P,(x)) € sgn(F(W)),and fori =1,..., W,

sgn(P,(1)) =sgn(2y; — 1) (16)
= Yi, (17)

where (16) follows from @, (i) = z;,i = 1,...,W,and in (17) we used sgn(2y—1) =
y fory € {0, 1}. It follows from Lemma 2 in the Handout that sgn(F(1V)) shatters
{1,..., W}, and therefore, by the definition of VC dimension, we get

VC(sgn(F(W))) > {1,..., W} =W.



