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Problem 1

(a) Ia,b = Ha −Hb

(b) Φt,ℓ(x) = 2ℓρ(x− (t− 2−ℓ))− 2ℓρ(x− t),
W(Φt,ℓ) = 2, B(Φt,ℓ) = max{2ℓ, |t|, |t− 2−ℓ|}, and

M(Φt,ℓ) =

{
5, t ∈ {0, 2−ℓ}
6, else

.

(c) Observe that

∥Gt,ℓ −Ht∥2L2(R) =

∫ t

t−2−ℓ

|Gt,ℓ(x)−Ht(x)|2dx

=

∫ t

t−2−ℓ

|2ℓ(x− (t− 2−ℓ))|2dx

=

∫ 2−ℓ

0

|2ℓx|2dx

=

∫ 2−ℓ

0

22ℓx2dx

= 22ℓ
(

1
3
x3
∣∣∣2−ℓ

0

)
= 1

3
2−ℓ.

Taking square roots now yields the desired result.

(d) Let Φa,ℓ and Φb,ℓ be the networks obtained by setting t = a and t = b, respectively,
in the network Φt,ℓ from subproblem (b). Take, in accordance with Lemma 1 in
the Handout, Φa,b,ℓ to be the network satisfying Φa,b,ℓ(x) := Φa,ℓ(x) − Φb,ℓ(x), for
all x ∈ R. Using the results from subproblems (a) and (c), it follows that

∥Φa,b,ℓ − Ia,b∥L2(R) = ∥(Φa,ℓ − Φb,ℓ)− (Ha −Hb)∥L2(R)

= ∥(Ga,ℓ −Gb,ℓ)− (Ha −Hb)∥L2(R)

≤ ∥Ga,ℓ −Ha∥L2(R) + ∥Gb,ℓ −Hb∥L2(R)

≤ 2√
3
2−

ℓ
2 .
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(e) Take Ψa,b,ε = Φa,b,ℓε for ℓε = ⌈2 log2( 2√
3
ε−1)⌉ with Φa,b,ℓε as defined in subproblem

(d). Consequently, we have

∥Ψa,b,ε − Ia,b∥L2(R) = ∥Φa,b,ℓε − Ia,b∥L2(R) ≤ 2√
3
2−

ℓε
2 ≤ ε.

Application of Lemma 1 in the Handout yields

L(Ψa,b,ε) = 2

B(Ψa,b,ε) = max{2ℓε , |a|, |b|, |a− 2−ℓε |, |b− 2−ℓε|}
M(Ψa,b,ε) ≤ 12.
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Problem 2

(a) It holds that

∥hc1 − hc2∥L∞([0,1)) =

∥∥∥∥∥
k∑

j=1

(c1j − c2j)I[ j−1
k

, j
k)

∥∥∥∥∥
L∞([0,1))

= max
j=1,...,k

|c1j − c2j | = ∥c1 − c2∥∞.

(b) First, note that, for every x ∈ [0, 1], we have |x − 1
3
| ≤ 1

3
or |x − 2

3
| ≤ 1

3
(or both).

Now, let h ∈ S2. There exists c ∈ [0, 1]2 such that h = hc. Consequently, there
exists i ∈ {1, 2, 3, 4} so that

∥h− hci∥L∞([0,1)) = ∥hc − hci∥L∞([0,1)) = ∥c− ci∥∞ ≤ 1
3
.

(c) Let Y = {he1 , he2 , he3 , he4} with e1 = (1
8
, 1
8
), e2 = (1

8
, 7
8
), e3 = (7

8
, 1
8
), and e4 = (7

8
, 7
8
).

For i, j ∈ {1, 2, 3, 4} with i ̸= j, we have

∥hei − hej∥L∞([0,1)) = ∥ei − ej∥∞ = |7
8
− 1

8
| = 3

4
> 2

3
.

This implies that Y is a 2
3
-packing of S2. Combining the hint with the result from

subproblem (b) completes the proof.

(d) For c := (1
2
, . . . , 1

2
) ∈ [0, 1]k, we get hc(x) =

1
2
, for all x ∈ [0, 1). As maxx∈[0,1] |x −

1
2
| ≤ 1

2
, the singleton {hc} is a 1

2
-covering of Sk with respect to the metric ρ∞.

The claim now follows by noting that an empty set cannot be a covering for a
non-empty set.
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Problem 3

(a) The dichotomy
{
X+

1 , X
−
1

}
is said to be homogeneously linearly separable if there

exists a nonzero vector w1 ∈ Rd such that

⟨x,w1⟩ > 0, for all x ∈ X+
1 ,

⟨x,w1⟩ < 0, for all x ∈ X−
1 ,

and it is said to be ϕ-separable if there exists a nonzero vector w2 ∈ Rm such that

⟨ϕ(x), w2⟩ > 0, for all x ∈ X+
1 ,

⟨ϕ(x), w2⟩ < 0, for all x ∈ X−
1 .

(b) The dichotomy is homogeneously linearly separable. Let w = −1. Then ⟨x,w⟩ >
0 for all x ∈ X+

2 = {−3π/2,−π/2}, and ⟨x,w⟩ < 0 for all x ∈ X−
2 = {π/2, 3π/2}.

(c) Suppose, for the sake of contradiction, that {X+
2 , X

−
2 } is ϕ1-separable. Then, there

exists a nonzero vector w = (u, v) such that

⟨ϕ1(x), (u, v)⟩ > 0, for all x ∈ X+
2 ,

⟨ϕ1(x), (u, v)⟩ < 0, for all x ∈ X−
2 ,

which amounts to

⟨ϕ1(−3π/2), (u, v)⟩ = v > 0, (1)
⟨ϕ1(−π/2), (u, v)⟩ =− v > 0, (2)
⟨ϕ1(π/2), (u, v)⟩ = v < 0, (3)
⟨ϕ1(3π/2), (u, v)⟩ =− v < 0. (4)

Relations (1) and (3) can not hold simultaneously, which establishes the desired
contradiction.

Let f(x) = x, x ∈ R, and hence ϕ2 = (cos(x), sin(x), x), x ∈ R, and let w =
(0, 0,−1). Then, we have

⟨ϕ2(−3π/2), w⟩ = 3π/2 > 0, (5)
⟨ϕ2(−π/2), w⟩ = π/2 > 0, (6)
⟨ϕ2(π/2), w⟩ = − π/2 < 0, (7)
⟨ϕ2(3π/2), w⟩ = − 3π/2 < 0, (8)

and therefore the dichotomy {X+
2 = {−3π/2,−π/2}, X−

2 = {π/2, 3π/2}} is ϕ2-
separable.

(d) Let x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1), and set X = {x1, x2, x3}. Then, for
every (y1, y2, y3) ∈ {0, 1}3, there exists an f ∈ F such that

f(xi) = yi, i = 1, 2, 3,

namely f(z1, z2, z3) = sgn(
∑3

i=1(2yi − 1)zi), (z1, z2, z3) ∈ R3. It therefore follows
from Lemma 2 in the Handout that F shatters X .
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(e) Suppose N ∈ N such that ΠG(N) = 2N . We have 2N = ΠG(N) ≤ 4N2, where
the inequality is by the assumption ΠG(m) ≤ 4m2, for all m ∈ N. It follows that
N−2−2 log2(N) ≤ 0. Let g(x) = x−2−2 log2(x). We have g(8) = 8−2−2 log2(8) =
0, and

g′(x) = 1− 2

x ln(2)
> 0,

for all x ≥ 8. It hence follows that g is strictly increasing on [8,∞), and g(x) > 0,
for all x ∈ (8,∞). Since g(N) ≤ 0, we must have N /∈ (8,∞), i.e., N ≤ 8. Then, by
the definition of VC dimension,

VC(G) = max{N ∈ N : ΠG(N) = 2N} ≤ 8.
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Problem 4

(a) Suppose that Φ ∈ F(W ). By definition, Φ = W2 ◦ ρ ◦ W1 for some W1(x) =
(d1, . . . , dn)

Tx + (e1, . . . , en)
T , x ∈ R, and W2(x) = (f1, . . . , fn)x + g, x ∈ Rn, with

n ≤ W . We have

Φ(x) =
n∑

i=1

fiρ(dix+ ei) + g (9)

=
∑

i=1,...,n
di ̸=0

fi|di|ρ
(

di
|di|

(
x−

(
−ei
di

)))
+

 ∑
i=1,...,n
di=0

fiρ(ei) + g

 , (10)

where in (10) we used ρ(uv) = uρ(v), for all u ≥ 0 and v ∈ R. Let I = {i ∈
{1, . . . , n} : di ̸= 0}, w = |I|, and k : {1, . . . , w} 7→ I be an ordering of I such that(
− ek(i)

dk(i)

)w

i=1
is non-decreasing. Set ai = fk(i)|dk(i)|, bi =

(
− ek(i)

dk(i)

)
, si =

dk(i)
|dk(i)|

∈ {0, 1},
for i = 1, . . . , w, and c =

∑
i=1,...,n
di=0

fiρ(ei) + g. Then, Φ(x) can be written as

w∑
i=1

aiρ(si(x− bi)) + c, x ∈ R, (11)

such that b1 ≤ b2 ≤ b3 ≤ · · · ≤ bw, and w ≤ n ≤ W .

(b) For all i ∈ {1, . . . , w}, as the function x 7→ aiρ(si(x− bi)) is affine on (−∞, bi] and
[bi,∞), and each of the intervals (−∞, b1], [b1, b2], [b2, b3], . . . , [bw−1, bw], and [bw,∞)
is contained in either (−∞, bi] or [bi,∞), we have that the function x 7→ aiρ(si(x−
bi)) is affine on each of the intervals (−∞, b1], [b1, b2], [b2, b3], . . . , [bw−1, bw], and
[bw,∞). Since affinity is preserved under addition, the sum x 7→

∑w
i=1 aiρ(si(x −

bi)) + c is also affine on each of the intervals (−∞, b1], [b1, b2], [b2, b3], . . . , [bw−1, bw],
and [bw,∞).

(c) Suppose first that sgn(f(x1)) = sgn(f(x3)) = 1, which implies f(x1) ≥ 0 and
f(x3) ≥ 0. Since f is affine on [x1, x3], it attains its minimum and maximum on
[x1, x3] at its boundary points, i.e., at either x1 or x3. This then implies f(x2) ≥
min{f(x1), f(x3)} ≥ 0 and hence sgn(f(x2)) = 1 = sgn(f(x1)) = sgn(f(x3)). The
statement for the case sgn(f(x1)) = sgn(f(x3)) = 0 can be established similarly.

(d) Suppose, for the sake of contradiction, that there exists a set X = {x1, . . . , xn} ⊂ R
of n elements with n ≥ 2W + 3 and x1 < x2 < x3 < · · · < xn and a ReLU network
Φ ∈ F(W ) such that

sgn(Φ(xi)) =

{
0, if i is odd,
1, if i is even,

for i = 1, . . . , n. According to the result from subproblem (a), Φ can be written as
w∑
i=1

aiρ(si(x− bi)) + c, x ∈ R, (12)

where w ≤ W , a1, . . . , aw, b1, . . . , bw, c ∈ R, s1, . . . , sw ∈ {−1, 1} and b1 ≤ b2 ≤
· · · ≤ bw. Let S1 = (−∞, b1], Si = [bi−1, bi], for i = 2, . . . , w, and Sw+1 = [bw,∞).
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Then X ⊂ ∪w+1
i=1 Si. By the pigeonhole principle, there exists an interval Si, i ∈

{1, . . . , w + 1}, such that |X ∩ Si| ≥ |X|
w+1

≥ 2W+3
W+1

> 2, which implies |X ∩ Si| ≥ 3.
We can hence assume, without loss of generality, that {xj, xj+1, xj+2} ⊂ Si for
some j ∈ {1, . . . , n− 2}. We have

sgn(Φ(xj)) = sgn(Φ(xj+2)) ̸= sgn(Φ(xj+1)) (13)

by assumption. According to subproblem (b), Φ is affine on Si and therefore
affine on its subinterval [xj, xj+2]. Then, according to the result from subproblem
(c) with sgn(Φ(xj)) = sgn(Φ(xj+2)), we must have sgn(Φ(xj)) = sgn(Φ(xj+2)) =
sgn(Φ(xj+1)), which contradicts (13).

(e) Suppose, for the sake of contradiction, that VC(sgn(F(W ))) ≥ 2W + 3. Then,
by definition, there exists a subset X = {x1, . . . , xn}, with n ≥ 2W + 3 and x1 <
x2 < · · · < xn, such that sgn(F(W )) shatters X . In particular, this together with
Lemma 2 in the Handout implies the existence of a network Φ ∈ F(W ) such that,
for i = 1, . . . , n,

sgn(Φ(xi)) =

{
0, if i is odd,
1, if i is even.

The existence of this Φ, however, contradicts the result from subproblem (d).

(f) For every z = (zi)
W
i=1 ∈ RW , we define Φz : R 7→ R as

Φz(x) = z1(1− ρ(x− 1) + ρ(x− 2))

+
W−1∑
i=2

zi(ρ(x− (i− 1))− 2ρ(x− i) + ρ(x− (i+ 1)))

+ zW (ρ(x− (W − 1))) (14)

= z1 + (z2 − z1)ρ(x− 1) +
W−1∑
i=2

(zi−1 − 2zi + zi+1)ρ(x− i)

+ zW−1ρ(x−W ), (15)

such that Φz(i) = zi, for all i ∈ {1, . . . ,W}, according to expression (14), and
Φz ∈ F(W ), according to expression (15).

For every y = (yi)
W
i=1 ∈ {0, 1}W , let z = (zi)

W
i=1 = (2yi − 1)Wi=1. We have that

x 7→ sgn(Φz(x)) ∈ sgn(F(W )), and for i = 1, . . . ,W ,

sgn(Φz(i)) = sgn(2yi − 1) (16)
= yi, (17)

where (16) follows from Φz(i) = zi, i = 1, . . . ,W , and in (17) we used sgn(2y−1) =
y for y ∈ {0, 1}. It follows from Lemma 2 in the Handout that sgn(F(W )) shatters
{1, . . . ,W}, and therefore, by the definition of VC dimension, we get

VC(sgn(F(W ))) ≥ |{1, . . . ,W}| = W.
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