

Exam on Neural Network Theory August 29, 2022

Please note:

- Exam duration: 180 minutes
- Maximum number of points: 100
- You are not allowed to use any printed or handwritten material (i.e., books, lecture and discussion session notes, summaries), computers, tablets, smart phones or other electronic devices.
- Your solutions should be explained in detail and your handwriting needs to be clean and legible.
- Please do not use red or green pens. You may use pencils.
- Please note that the "ETH Zurich Ordinance on Disciplinary Measures" applies.

Before you start:

- 1. The problem statements consist of 5 pages including this page. Please verify that you have received all 5 pages.
- 2. Please fill in your name, student ID card number and sign below.
- 3. Please place your student ID card at the front of your desk so we can verify your identity.

During the exam:

- 4. For your solutions, please use only the empty sheets provided by us. Should you need additional sheets, please let us know.
- 5. Each problem consists of several subproblems. If you do not provide the solution to a subproblem, you may, whenever applicable, nonetheless assume its conclusion in the ensuing subproblems.
- 6. All results in the Handout can be used without proof.

After the exam:

- 7. Please write your name on every solution sheet and prepare all sheets in a pile. All sheets, including those containing problem statements, must be handed in.
- 8. Please clean up your desk and remain seated and silent until you are allowed to leave the room in a staggered manner row by row.
- 9. Please avoid crowding and leave the building by the most direct route.

Family name:	First name:
Student ID card No.:	
Signature:	

Problem 1 (25 points)

Let $f_1: [0,1] \rightarrow [0,1]$ be given by

$$f_1(x) := \begin{cases} 0, & x \in [0, \frac{1}{4}] \\ 2(x - \frac{1}{4}), & x \in (\frac{1}{4}, \frac{3}{4}) \\ 1, & x \in [\frac{3}{4}, 1] \end{cases}$$

and, for $n \ge 2$, $n \in \mathbb{N}$, let $f_n := f_1 \circ f_{n-1}$.

- (a) (3 points) Find a ReLU neural network Φ_1 satisfying $\Phi_1(x) = f_1(x)$, for all $x \in [0, 1]$, and specify $\mathcal{L}(\Phi_1)$, $\mathcal{W}(\Phi_1)$, $\mathcal{M}(\Phi_1)$, and $\mathcal{B}(\Phi_1)$.
- (b) (5 points) Find a ReLU neural network Φ_3 satisfying $\Phi_3(x) = f_3(x)$, for all $x \in [0, 1]$, with $\mathcal{B}(\Phi_3) \leq 2$ and specify $\mathcal{L}(\Phi_3)$, $\mathcal{W}(\Phi_3)$, and $\mathcal{M}(\Phi_3)$.
- (c) (6 points) Show that, for $n \in \mathbb{N}$ and $x \in [0, 1]$,

$$f_n(x) = \begin{cases} 0, & x \in [0, \frac{1}{2} - 2^{-(n+1)}] \\ 2^n (x - (\frac{1}{2} - 2^{-(n+1)})), & x \in [\frac{1}{2} - 2^{-(n+1)}, \frac{1}{2} + 2^{-(n+1)}] \\ 1, & x \in [\frac{1}{2} + 2^{-(n+1)}, 1] \end{cases}$$

(d) (5 points) Let $H: [0,1] \rightarrow [0,1]$ be given by

$$H(x) := \begin{cases} 0, & x \in [0, \frac{1}{2}] \\ 1, & x \in (\frac{1}{2}, 1] \end{cases}$$

Show that, for every $\varepsilon\in(0,\frac{1}{2}),$ there exists a ReLU neural network Ψ_{ε} satisfying

$$\|H - \Psi_{\varepsilon}\|_{L^2([0,1])} \le \varepsilon.$$

- (e) (2 points) Show that $\rho(x) + \rho(-x) = |x|$, for $x \in \mathbb{R}$, where $\rho(x) := \max\{0, x\}$ is the ReLU activation function.
- (f) (4 points) Let $d \in \mathbb{N}$. Realize $g \colon \mathbb{R}^d \to \mathbb{R}, x \mapsto ||x||_1$ as a ReLU neural network Γ and specify $\mathcal{L}(\Gamma)$, $\mathcal{W}(\Gamma)$, $\mathcal{M}(\Gamma)$, and $\mathcal{B}(\Gamma)$.

Problem 2 (25 points)

For $n, d \in \mathbb{N}$, let $\mathcal{C}_{n,d} \subset L^{\infty}(\mathbb{R}^d)$ be given by

$$\mathcal{C}_{n,d} := \{ \mathbb{I}_k \colon k \in \{0, \dots, n-1\}^d \},\$$

where, for $k \in \{0, ..., n-1\}^d$, we denote the indicator function of the *d*-dimensional cube $\times_{j=1}^d [k_j, k_j + 1) \subseteq \mathbb{R}^d$ by

$$\mathbb{I}_k(x) := \begin{cases} 1, & x \in \bigotimes_{j=1}^d [k_j, k_j + 1) \\ 0, & \text{else} \end{cases}$$

We consider covering numbers and packing numbers with respect to the metric

$$\rho_{\infty}(f,g) := \|f - g\|_{L^{\infty}(\mathbb{R}^d)}.$$

(a) (2 points) Show that, for $n, d \in \mathbb{N}$ and $k, k' \in \{0, \dots, n-1\}^d$, the metric ρ_{∞} satisfies

$$\rho_{\infty}(\mathbb{I}_k, \mathbb{I}_{k'}) = \begin{cases} 0, & k = k' \\ 1, & k \neq k' \end{cases}$$

(b) (5 points) Show that, for $n, d \in \mathbb{N}$ and $\varepsilon \in (0, \infty)$, the ε -covering numbers of the set $\mathcal{C}_{n,d}$ with respect to the metric ρ_{∞} satisfy

$$N(\varepsilon; \mathcal{C}_{n,d}, \rho_{\infty}) = \begin{cases} 1, & \varepsilon \ge 1\\ n^{d}, & \varepsilon < 1 \end{cases}$$

For $n, d \in \mathbb{N}$, let $\mathcal{C}^*_{n,d} \subset L^{\infty}(\mathbb{R}^d)$ be given by

 $\mathcal{C}_{n,d}^* := \{ \alpha \mathbb{I}_k \colon k \in \{0, \dots, n-1\}^d, \alpha \in [0,1] \}.$

(c) (9 points) Show that there exists a constant $b \in \mathbb{R}_+$ such that, for all $n, d \in \mathbb{N}$ and $\varepsilon \in (0, \frac{1}{2})$,

$$N(\varepsilon; \mathcal{C}^*_{n,d}, \rho_{\infty}) \leq b \, n^d \, \varepsilon^{-1}.$$

(d) (9 points) Show that there exists a constant $a \in \mathbb{R}_+$ such that, for all $n, d \in \mathbb{N}$ and $\varepsilon \in (0, \frac{1}{2})$,

$$M(\varepsilon; \mathcal{C}^*_{n,d}, \rho_\infty) \ge a \, n^d \, \varepsilon^{-1}.$$

Problem 3 (30 points)

- (a) (5 points) Let X_1 be a finite subset of \mathbb{R}^d , $d \in \mathbb{N}$, let $\{X_1^+, X_1^-\}$ be a dichotomy of X_1 , and consider the mapping $\phi : \mathbb{R}^d \mapsto \mathbb{R}^m$, $m \in \mathbb{N}$. State the definition for the dichotomy $\{X_1^+, X_1^-\}$ to be homogeneously linearly separable and the definition for it to be ϕ -separable.
- (b) (6 points) Consider the set $X_2 = \{(-1,0), (1,0), (0,1), (0,-1)\}$. Show that the dichotomy

$$\{X_2^+ = \{(-1,0), (1,0)\}, X_2^- = \{(0,1), (0,-1)\}\},\$$

is not homogeneously linearly separable and find a function $\phi : \mathbb{R}^2 \mapsto \mathbb{R}$ such that $\{X_2^+, X_2^-\}$ is ϕ -separable.

(c) (6 points) Consider the class of functions

$$\mathcal{F} := \bigg\{ f : \mathbb{R} \mapsto \{0, 1\} : f(x) = \operatorname{sgn}(\sin(kx+b)), (k, b) \in \mathbb{R}^2 \bigg\},\$$

where sgn : $\mathbb{R} \mapsto \{0, 1\}$ is given by

$$\operatorname{sgn}(x) := \begin{cases} 1, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Show that \mathcal{F} shatters the set $\{0, 1\}$.

- (d) (5 points) Let \mathcal{G} be a class of $\{0,1\}$ -valued functions on \mathbb{R} . Suppose that the growth function of \mathcal{G} satisfies $\Pi_{\mathcal{G}}(1) = 1$. Show that $\Pi_{\mathcal{G}}(N) = 1$, for all $N \in \mathbb{N}$.
- (e) (8 points) Show that the VC dimension of the class of functions \mathcal{F} from subproblem (c) satisfies

$$VC(\mathcal{F}) = \infty.$$

Problem 4 (20 points)

Consider the family of 1-Lipschitz continuous functions on [0, 1] given by

 $H^{1}([0,1]) := \{ f : \mathbb{R} \mapsto \mathbb{R} : f \text{ is continuous}, |f(x) - f(y)| \le |x - y|, \, \forall x, y \in [0,1] \}.$

In this problem, we study the fundamental limit of ReLU neural network approximation of functions in $H^1([0,1])$, using a VC dimension upper bound for ReLU neural networks.

(a) (5 points) Let $p : [0,1] \mapsto \mathbb{R}$ be defined according to

$$p(x) := \begin{cases} \frac{1}{4} - x, & \text{for } x \in \left[0, \frac{1}{2}\right], \\ x - \frac{3}{4}, & \text{for } x \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Plot p and show that $p \in H^1([0, 1])$.

(b) (4 points) For $n \in \mathbb{N}$ and $y = (y_0, \dots, y_n) \in \{0, 1\}^{n+1}$, show the existence of a function $h_y \in H^1([0, 1])$ such that

$$h_y\left(\frac{i}{n}\right) = \frac{2y_i - 1}{2n}, \text{ for } i = 0, \dots, n,$$
 (1)

and

$$\operatorname{sgn}\left(h_y\left(\frac{i}{n}\right)\right) = y_i, \text{ for } i = 0, \dots, n,$$
(2)

where sgn : $\mathbb{R} \mapsto \{0, 1\}$ is defined as

$$\operatorname{sgn}(x) := \begin{cases} 1, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

(c) (4 points) For $n \in \mathbb{N}$ and $y = (y_0, \ldots, y_n) \in \{0, 1\}^{n+1}$, let $h_y \in H^1([0, 1])$ be a function satisfying (1) and (2) from subproblem (b). Show that for every function $g : [0, 1] \mapsto \mathbb{R}$ satisfying $\sup_{x \in [0, 1]} |h_y(x) - g(x)| \leq \frac{1}{4n}$, it holds that

$$\operatorname{sgn}\left(g\left(\frac{i}{n}\right)\right) = y_i, \text{ for } i = 0, \dots, n.$$
 (3)

(d) (7 points) Fix $W, L \in \mathbb{N}$ with $L \ge 2$. Consider the set of ReLU neural networks

$$\mathcal{N}(W,L) = \{ \Phi \in \mathcal{N}_{1,1} : \mathcal{L}(\Phi) \le L \text{ and } \mathcal{W}(\Phi) \le W \},\$$

and define

$$\operatorname{sgn}(\mathcal{N}(W,L)) = \{\operatorname{sgn} \circ \Phi : \Phi \in \mathcal{N}(W,L)\}.$$

It is known from the literature that the VC dimension of the class $sgn(\mathcal{N}(W, L))$ satisfies

$$\operatorname{VC}(\operatorname{sgn}(\mathcal{N}(W,L))) \le CW^2 L^2(\log(W) + \log(L)), \tag{4}$$

for some constant *C* not depending on *W*, *L*. Show that there exists a function $h \in H^1([0,1])$ such that for all ReLU neural networks $\Phi \in \mathcal{N}(W,L)$,

$$\sup_{x \in [0,1]} |h(x) - \Phi(x)| > \frac{1}{4CW^2 L^2(\log(W) + \log(L))}$$

Hint: Use the results from subproblems (b) and (c).

Handout for Exam on Neural Network Theory August 29, 2022

Definition 1 (Norms; Cartesian product). For $n \in \mathbb{N}$, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, we define

$$||x||_1 := \sum_{j=1}^n |x_j|.$$

For $X, Y \subseteq \mathbb{R}^d$, $f: X \to Y$, we define

$$||f||_{L^2(X)} := \left(\int_X |f(x)|^2 \mathrm{d}x\right)^{\frac{1}{2}}$$

and

$$||f||_{L^{\infty}(X)} := \sup_{x \in X} |f(x)|.$$

Definition 2 (Cartesian product). For $d \in \mathbb{N}$ and sets $S_j \subseteq \mathbb{R}$, $j \in \{1, ..., d\}$, we define their Cartesian product as

$$\sum_{j=1}^{d} S_j := \{ x = (x_1, \dots, x_d) \in \mathbb{R}^d \colon x_j \in S_j, \text{ for } j \in \{1, \dots, d\} \}$$

In the case of $S_j = S$, for all $j \in \{1, \ldots, d\}$, we write $S^d := \bigotimes_{j=1}^d S$.

Definition 3 (Covering and covering number). Let (\mathcal{X}, ρ) be a metric space. An ε covering of a compact set $\mathcal{C} \subseteq \mathcal{X}$ with respect to the metric ρ is a set $\{x_1, \ldots, x_N\} \subseteq \mathcal{C}$ such that for each $x \in \mathcal{C}$, there exists an $i \in \{1, \ldots, N\}$ so that $\rho(x, x_i) \leq \varepsilon$. The ε covering number $N(\varepsilon; \mathcal{C}, \rho)$ is the cardinality of the smallest ε -covering.

Definition 4 (Packing and packing number). Let (\mathcal{X}, ρ) be a metric space. An ε -packing of a compact set $\mathcal{C} \subseteq \mathcal{X}$ with respect to the metric ρ is a set $\{x_1, \ldots, x_N\} \subseteq \mathcal{C}$ such that $\rho(x_i, x_j) > \varepsilon$, for all $i, j \in \{1, \ldots, N\}$ with $i \neq j$. The ε -packing number $M(\varepsilon; \mathcal{C}, \rho)$ is the cardinality of the largest ε -packing.

Definition 5 (ReLU neural network). Let $L \in \mathbb{N}$ and $N_0, N_1, \ldots, N_L \in \mathbb{N}$. A ReLU neural network Φ is a map $\Phi : \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ given by

$$\Phi = \begin{cases} W_1, & L = 1, \\ W_2 \circ \rho \circ W_1, & L = 2, \\ W_L \circ \rho \circ W_{L-1} \circ \rho \circ \cdots \circ \rho \circ W_1, & L \ge 3, \end{cases}$$

where, for $\ell \in \{1, \ldots, L\}$, $W_{\ell} \colon \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, W_{\ell}(x) := A_{\ell}x + b_{\ell}$ are the associated affine transformations with matrices $A_{\ell} \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ and (bias) vectors $b_{\ell} \in \mathbb{R}^{N_{\ell}}$, and the ReLU activation function $\rho \colon \mathbb{R} \to \mathbb{R}$, $\rho(x) := \max\{x, 0\}$ acts component-wise, i.e., $\rho(x_1, \ldots, x_N) := (\rho(x_1), \ldots, \rho(x_N))$. We denote by $\mathcal{N}_{d,d'}$ the set of all ReLU neural networks with input dimension $N_0 = d$ and output dimension $N_L = d'$. Moreover, we define the following quantities related to the notion of size of the ReLU neural network Φ :

- the *connectivity* $\mathcal{M}(\Phi)$ is the total number of non-zero entries in the matrices A_{ℓ} , $\ell \in \{1, \ldots, L\}$, and the vectors $b_{\ell}, \ell \in \{1, \ldots, L\}$,
- depth $\mathcal{L}(\Phi) := L$,
- width $\mathcal{W}(\Phi) := \max_{\ell=0,\dots,L} N_{\ell}$,
- weight magnitude $\mathcal{B}(\Phi) := \max_{\ell=1,\dots,L} \max\{\|A_\ell\|_\infty, \|b_\ell\|_\infty\}.$

Definition 6 (Growth function). Let \mathcal{F} be a class of $\{0, 1\}$ -valued functions on a domain \mathcal{X} . We define the growth function of \mathcal{F} , $\Pi_{\mathcal{F}} : \mathbb{N} \mapsto \mathbb{N}$, as

$$\Pi_{\mathcal{F}}(N) = \max\{|\mathcal{F}_{|X}| : X \subseteq \mathcal{X}, |X| = N\},\$$

where $\mathcal{F}_{|X} = \{f|_X : f \in \mathcal{F}\}$, for $X \subset \mathcal{X}$, and $f|_X : X \mapsto \{0, 1\}$ is the restriction of f to X, given by $f|_X(x) = f(x)$, for all $x \in X$.

Definition 7 (Shattering and VC dimension). Let \mathcal{F} be a class of $\{0, 1\}$ -valued functions on a domain \mathcal{X} . Suppose that $X = \{x_1, \ldots, x_N\}$ is a subset of \mathcal{X} . We say that \mathcal{F} shatters X if $|\mathcal{F}|_X| = 2^N$. The VC dimension of \mathcal{F} is the size of the largest subset of \mathcal{X} shattered by \mathcal{F} , or, equivalently, the largest value of N for which the growth function $\Pi_{\mathcal{F}}(N)$ equals 2^N . Formally,

$$VC(\mathcal{F}) = \max \{ |X| : X \subset \mathcal{X}, \mathcal{F} \text{ shatters } X \}$$
$$= \max \{ N \in \mathbb{N} : \Pi_{\mathcal{F}}(N) = 2^N \}.$$

Lemma 1 (Equivalence to shattering). Let \mathcal{F} be a class of $\{0, 1\}$ -valued functions on a domain \mathcal{X} . Suppose that $X = \{x_1, \ldots, x_N\}$ is a subset of \mathcal{X} . The set X is shattered by \mathcal{F} if and only if for every $(y_i)_{i=1}^N \in \{0, 1\}^N$, there exists a function $f \in \mathcal{F}$ so that $f(x_i) = y_i$, $i = 1, \ldots, N$.