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Problem 1

(a) Let

Az) == (i) T+ <:;ﬁ) , reR
B(y) = (2 —2) v, y € R?.
Then, fi = & := BopoAand L(®,) =2, W(P,) = 2, M(P;) =6, and B(P,) = 2.
(b) Let
$y:=BopoAoBopoAoBopoA.
We have &3 = ®, 0P, 0P = f1 0 fi0 fi = fyand

_ (2 2 —1/a 2
(Ao B)(y) = (2 _2)y+ (_3/4>, y R’
which satisfies B(®3;) < 2 as required. Moreover, £L(®,) = 4, W(®,) = 2, and

M(®)) = 18.

(c) We will prove the claim by natural induction. It holds for n = 1 by definition of
f1. For the induction step n — n + 1 we first note that, owing to the induction

assumption,
falg —270F) = 20 (3 — 270D — (3 — 27 (nHy)
=2n(2 ™t 272 (1)
_1
1
and
fn(% + 2—(n+2)) _ 2n(; + 2—(n+2) . (% . 2—(n+1)))
— 2n(2—n—1 + 2—n—2) (2)
_3
1

Next, note that f; is a monotonously increasing function which implies that f,
is monotonously increasing by virtue of being a composition of monotonously
increasing functions. Moreover, observe that f;, and therefore f,, maps from
[0,1] into [0, 1], which means that f,(z) < I ensures f,(z) € [0, 1] and, likewise,
fa(z) > 3 ensures f,(z) € [3,1]. Combined with (1) and (2) this implies

o forz € (0,1 —27"*?], that f,(z) € [0, 1] and thus f,41 = f1(f.(z)) =0,
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o forz e [1 — 27" 14 2=(2)] that f,(z) € [1, 2] and thus

fn+1 = fl(fn(x))
= [i(2"(z — (5 —270)

— 22— (-2 - ]

— 2 (@ - (} - 27)) - 27
= 2 (r — (§ - 2704 427042
=2z - (} - 270,

o forz € [1 4272 1], that f,(z) € [2,1] and thus f,41 = fi(fa(z)) = 1.

(d) As |H(z)— fu(x)| <1, forall x € [0,1], it follows that
1
17 = Fulfegony = | V@) = h@)da

Ta-(ntn)
< / 1dx

%_2—<n+1>
=2

and hence ||H — fu|lz2qo1) < 272. We can now take ®; realizing f; from sub-

problem (a), define ®,, := ®, o ®,_;, for n > 2, n € N, and note that ¢, = f,,

for n € N. For ¢ € (0, %), the ReLU neural network U, := ®(y),,--1) satisfies the

desired properties.

(e) For z < 0 we have p(z) + p(—z) = —z = |z|, and for > 0, it holds that p(x) +
p(—2) = v = Ja].

(f) Note that g(z) = ||z|1 = Z;l:l |z;]. We thus have g =T := C' 0 po D with

1 0 0 0
-1 0 0 0
0 1 0 0
0O -1 0 0
D: eRQdXd
0 0 1 0
0 0 -1 0
0 0 O 1
0 0O 0 -1
and
C:=(11 .- 1 1)eR™

We observe that £(I") = 2, W(I") = 2d, M(T") = 4d, and B(T") = 1.



Problem 2

(a) Letn,d € N. For k, k' € {0,...,n — 1}¢ with k # k', the functions I, and I, are
disjointly supported and hence

Poo (i, Ler) = [T — Ly || oo mety = max{[|Le[| poo may, [|Tp || 2o ey } = 1. 3)

(b) Let k € {0,...,n — 1}% Note that, owing to (3), the e-ball around I} contains
every element in C, 4, if ¢ > 1. Consequently, the singleton set {I;} constitutes
an e-covering of C, 4. In contrast, for ¢ < 1, the e-ball around I}, contains I only
and therefore we need to take all the elements of C, 4 in order to cover C,, 4. In
summary, noting that |C,, 4| = n?, we established

1, e>1

N(g;cn,mpoo) = {nd e < 1 .

(c) Note that the set
Bs,n,d = {j&ﬂk ke {O,---,’I’L— 1}d;j e {0,--.,L871J}}

is an e-covering of C; ;, as, for every k € {0,...,n — 1}? and o € [0,1], we have
|ae™! |l € B.,, 4 and

laly — |ae™ " |ely|| poo(ray = |a — [ae™" Je]
=a—|lac e
>a— (ae™t = 1)e

=a—a+¢

€,
owing to [ae ™! |e < wand |as™!| > ae~! — 1. Moreover, it holds that
|Benal = [{0,...,n = 13- [{0,..., e} =n%(le ] + 1) < 2nte.
We thus get
N(g;C;p 45 Poo) < 2nde™t,
which establishes the claim with b = 2.

(d) Note that
Acpa =[] - D) ke {0,....,n -1} 7€ {1,...,[e"] - 1}}

is a subset of C;; ;as j([¢e '] —1)7' € [0,1], for j € {1,...,[e7"] —1}. The set A ,, 4
is furthermore an e-packing of C;; ; as, for k, k" € {0,...,n — 1}¢, with k # k¥, and
7,5 €{1,...,[e7'] — 1}, we have

15([e™] = 1) 7' = 5" ([e7' = )7l oo = max{j([e™ ] = D)7/ ([e71] = 1)7'}
> (e -1
> ¢,



and, for k € {0,...,n —1}%and 5,5’ € {1,...,[e7}] — 1}, with j # j/, we have

Li(Te™ T = )7 e — 5" ([ = 1) Lellp =15 = 5)([e7 T = 1) 7]
> ([e -1~
> €.

Moreover, it holds that
|Acnal = {0,...on =1} - [{1,....[e ] =1} =nY[e ] - 1) > %ndé‘*l,
where we used ¢ € (0, ). We thus get
M (2:Cpy 4, poc) = gne ™!,

which proves the claim with a = 3.



Problem 3

(a) The dichotomy { X", X } is said to be homogeneously linearly separable if there
exists a nonzero vector w; € R? such that

(z,wy) >0, forallz € X7,
(x,wy) <0, forallz € X,

and it is said to be ¢-separable if there exists a nonzero vector w, € R™ such that
(d(x),ws) >0, forall z € X',
(p(x),wy) <0, forallx € X, .

(b) Suppose, for the sake of contradiction, that { X, ", X; } is homogeneously linearly
separable. Then, there would exist a nonzero vector w = (u,v) so that

(z, (u,v)) >0, forall z € X,
(x, (u,v)) <0, forallz € X,

which corresponds to

<(_1>O)7<uvv)> =—u>0, 4)
((1,0), (w,v)) = u>0, (5)
((0,1), (u,v)) = v <0, (6)

((0,-1), (u,v)) =—v <0. (7)

Relations (4)-(5) can not hold simultaneously, which establishes the desired con-
tradiction. Let ¢(x1, z2) = 2?7 — 23, (71, 79) € R?, and take w = 1. We then have

(p(—1,0),1) 1>0, (8)
(¢(1,0),1) = 1> 0, 9)
(0(0,1),1) =—=1 <0, (10)

(p(0,—1),1) =—1 < 0, (11)

and therefore the dichotomy { X", X, } is ¢-separable.

(c) Let f; € F,i=1,2,3,4, be given by

fi(z) =sgn (m(-%)) : z €R, (12)
fo(z) =sgn (sin <m - g)) z €R, (13)
f3(z) =sgn (sin<—m n g)) z €R, (14)
fi(x) =sgn (m(%)), z €R, (15)



(d)

(e)

such that

- sgn<sm( g)) =0, fi(l) = sgn(sin (—g)) — 0, (16)
- sgn(sm( g)) =0, fo(1) = sgn(sin(%)) —1, (17)
— sgn (sm(g)) =1, f5(1) = sgn(sin (—g)) — 0, (18)
_sgn<sm(g)) smln(D) 1 o
In summary, for (z1, z2) = (0,1) and every (yi1,v2) € {0,1}?, there exists an f € F

such that f(x;) = y;, 1 = 1, y Lemma 1 in the Handout, F hence shatters {0, 1}.

We shall first show that IIg(1) = 1 implies |G| = 1. Suppose that [Ig(1) = 1
and assume, for the sake of contradiction, that |G| > 2. Then, there would exist
f1, f2 € G and a € R such that

fila) # fo(a), (20)
which, in turn, implies
lg(1) = max{|Gx| : X C R,[X[=1} (21)
> G {a}| (22)
> {fil¢ay> fol{ay }] (23)
=2, (24)

where (21) follows from the definition of the growth function (See Definition 5 in
the Handout), and in (23) we used that f|(a}, f2|{a} € Gj{a} are distinct according
to (20). The resulting inequality IIg(1) > 2 contradicts the assumption Ilg(1) =1,
and therefore we must have |G| = 1. Since |G| = 1, it follows that |G| x| = 1, for all
X C R, and therefore [Ig(N) = max{|Gx| : X CR,|X| =N} =1,forall N ¢ N.

The proof is effected by establishing that VC(F) > n, for alln € N. Fix n € N and
set X = (x;)1, = (4)~,. Fory = (y;)", € {0,1}", let f, € F be given by

(s (S ) 5)). e

We shall show that f,(z;) = sgn(sin((}_7_, 4 7y;)mw; — 5)) = yi, fori =1,....n
To this end, we fix i € {1,...,n} and note that

(2} 4_jyj> TT; — g (25)
= (22; 4_jyj> T4t — g (26)
(E e b (S sy o



.....

( }: 4=y )W—ZMr (28)

(3 1)

2} g (29)

where we used |y;| < 1,forj =1,...,n,asy; € {0,1}. Substituting (28) and (29)
into (25)-(27) yields

1 T L T 1 T
2]{7T+ (yl — 5)77'— § S (;4 jyj)mci— 5 S 2k7T+ (yl — 5)71""5,
which, in turn, implies

(52 )on - T [ i-gamges) itu
— 2 [2km — 3 — 2 2kr — 34+ 3], ify; =0,
J

2

o= i[5S )es= ) ) e

In summary, for every y = (y;)I, € {0,1}", there exists a function f, € F such
that f,(z;) = y;, fori = 1,...,n. Hence, by Lemma 1 in the Handout, F shatters
{z;}}_,, which, in turn, implies VC(F) > n. As VC(F) > n holds for all n € N,
we must have VC(F) = oc.

and hence



Problem 4

(a)

(b)

The plot of the function p is given below.

1 ]
T
| < a2
=
W=
<§i
N[V

yau

1

=

The function p is continuous on [0, 1) and (1, 1], by the definition of p, continuous

1
at 5 as
I 1 N r 1 . 1 1
1m = l1im — e — —
S P\ e ) T AR P T E) TP 1’

and therefore continuous on its entire domain [0, 1]. Moreover, p is differentiable
on [0, 1]\{1/2} with |p'(z)| = 1, for z € [0,1]\{1/2}. For z,y € [0,1] with z < y,
we have

Ip(z) — py)| =

/ p(z)dz| < / P de=y—a=|z—y|
[z, y\{1/2} [z,y]\{1/2}

which establishes that p € H'(]0, 1]).

Forn € Nand y = (yo, ..., yn) € {0,1}"*}, let by, : [0, 1] — R be given by
Q) —
Ji 1, forx—l =0,...,n,
hy () = 2n n’
y\r) = 2u; — 1 T i+ 1Y\ |
+ (Yit1 — ¥i) :L‘—— , forze | — =0,...,n—1.
2n n’
Hence, the first requirement, namely,
N 2y — 1 _
h41>: Y fori=0,....n, (30)
n 2n

is trivially met. Applying the function sgn to both sides of (30) yields

sgn(@(%)) =y, fori=0,...,n, (31)
as desired. It remains to show that h, € H'([0,1]). Fori =0,...,n — 1, we have

hy(z) = ? i+1}’

+ (Yir1 — Yi) (96 — %)7 for x € [—7

2n n n

by the definition of h,, which 1mpl1es that h, is continuous on [£, 2], There-
fore, h, is continuous on U} [, ®] = |0, 1] which is the entire domain of

h,. Moreover, the function h 17; dqfferentiable on [0, 1\{£}r, with |} (z)] <
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(©)

(d)

,,,,,

|y () = hy(y)] =

[ oH@d <[ ey o= fo-yl
[zy]\ % Yo [zy]\ % Yo

which, combined with the continuity of h,, implies h, € H'([0, 1]).

Forn e N,y = (yo,...,yn) € {0,1}"*,and ¢ : [0, 1] — R, suppose that

1
sup |h,(x) —g(x)| < —.
s Jhy(@) — (@) < o

Then, fori =0, ...,n, we have

1 1 1 1 1 1
1 1 1 1 1 1
J— < J— j— — j— < —_—— —_— 1 A—
g(n) < hy<n> + hl’(n) g(n>’ S5 + 1 <0, ify; =0, (33)

where we used %, (%) = 22-1 and the assumption SUp,eo.1) [y () — g(x)| <

1

i 1
n 2n an*

From (32) and (33), we can now conclude that

an(o(2))

Suppose, for the sake of contradiction that, there isno h € H'([0, 1]) such that

1
h(z) — ()] >
msel[tl?l] | (l’) (I)’ 4ow2L2(10g(W) + 1Og(L))

This would then imply that, for every h € H'([0, 1]), there exists a ® € N (W, L)
(depending on h) so that

, forall® e N(W,L). (34)

sup [h(z) — ®(z) !

< . 35
Sup S WL llog(W) + Tog (D) (35)

Letn = VC(sgn(N (W, L))) and fix y = (yo, - - ., yn) € {0,1}". Then, by subprob-
lem (b), there exists an h, € H'([0, 1]) satisfying

hy(%>:2y;;1,fori:0,...,n, (36)
and .
sgn(hy(%» =vy;, fori=0,...,n. (37)

By the contradictory assumption, there exists a ®, € N(W, L), depending on h,,
such that

1
ho(z) — @, (2)| < ,
xi%%' y(@) = By(@)] < ACW2L2(log(W) + log(L))

which, combined with the VC dimension upper bound VC(sgn(N (W, L))) <
CW?2L?(log(W) + log(L)) and n = VC(sgn(N (W, L))), yields

(38)

sup [y () — B ()] < — (39)

z€[0,1] ~dn



Application of the result in subproblem (c), with the requisite condition satisfied
thanks to (39), yields

sgn((by(%)) =vy;, fori =0,...,n.

Since the choice of y was arbitrary, we, indeed, have shown that, for X = (z;), =
(£)7_, and every y = (y;)i-, € {0,1}"™, there exists a function sgn o @, €

n

sgn(N (W, L)), depending on y, so that
(sgno ®,)(z;) =y;, fori=0,...,n.

Finally, application of Lemma 1 in the Handout yields that sgn(N (W, L)) shatters
X = (z;)", and hence

VC(sgn(N (W, L))) =n+1>n=VC(sgnN(W, L))),

which establishes the desired contradiction.
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