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Problem 1 (25 points)

The clipped ReLU function σ : R → R is defined according to

σ(x) =


0, for x < 0,

x, for 0 ≤ x ≤ 1,

1, for x > 1.

(a) (4 points) Realize the clipped ReLU function through a ReLU network Φ (see the
Handout for the definition of a ReLU network). Specify L(Φ), W(Φ), and M(Φ).

(b) (6 points) Consider the function f : R → R given by

f(x) = σ(4x)− σ(2x− 1/2) + σ(4x− 3).

Sketch the function f . Find a ReLU network Φf satisfying Φf (x) = f(x), for all
x ∈ R, with L(Φf ) = 2, and specify W(Φf ), M(Φf ), and B(Φf ).

(c) (4 points) The two-dimensional function g : R2 → R is given by

g(x, y) = σ(σ(−2x− y + 1) + σ(0.5x− 2y)).

Find a ReLU network Φg satisfying Φg(x, y) = g(x, y), for all x, y ∈ R, with
L(Φg) = 3.
Hint: Use the result from subproblem (a).

(d) (6 points) Define the operations ∧ and ∨ on R according to

x ∨ y := max{x, y}
x ∧ y := min{x, y}.

Find ReLU networks Φ∨ and Φ∧ satisfying Φ∨(x, y) = x ∨ y and Φ∧(x, y) = x ∧ y,
for all x, y ∈ R.

(e) (5 points) The three-dimensional function h : R3 → R is given by

h(x, y, z) = min{x, y, z}.

Find a ReLU network Φh satisfying Φh(x, y, z) = h(x, y, z), for all x, y, z ∈ R.

Hint: Write h in the form of nested minima, i.e., min{x, y, z} = min{min{x, y}, z}.
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Problem 2 (25 points)

Consider the following parametric class of functions

F = {fθ,θ′ : [0, 1] → R|θ, θ′ ∈ [0, 1]},

where for θ, θ′ ∈ [0, 1], we set fθ,θ′(x) := 1 − e−θx + θ′, x ∈ [0, 1]. We consider covering
numbers and packing numbers with respect to the metric

ρ∞(f, g) := sup
x∈[0,1]

|f(x)− g(x)|.

(a) (4 points) State the definition of an ϵ-covering of F with respect to the metric ρ∞
and of the corresponding ϵ-covering number N(ε;F , ρ∞).

(b) (5 points) Show that, for all ϵ ≥ 2, it holds that

N(ε;F , ρ∞) = 1.

(c) (6 points) For ϵ < 2, construct an ϵ-covering for the class F as follows. Set T =⌊
1
ϵ

⌋
, and for i, j = 0, 1, . . . , T , define θi = ϵi and θ′j = ϵj. By also adding the points

θT+1 = 1 and θ′T+1 = 1, we obtain a collection {(θi, θ′j) : i, j = 0, 1, . . . , T + 1}
contained within [0, 1]2 of cardinality (T +2)2. Show that the associated functions
{fθi,θ′j : i, j = 0, 1, . . . , T + 1} constitute an ϵ-covering of F . Determine an upper
bound on the ϵ-covering number N(ε;F , ρ∞) as a function of ϵ.

Hint: You can use without proof that 1− e−x ≤ x, for x ∈ [0, 1].

(d) (6 points) For ϵ < 2, construct an ϵ-packing for the class F with respect to the
metric ρ∞. Find a lower bound on the ϵ-packing number M(ε;F , ρ∞) in terms
of ϵ.

(e) (4 points) Show that the metric entropy of the class F with respect to the met-
ric ρ∞ satisfies

logN(ε;F , ρ∞) ≍ log(1/ϵ), as ϵ → 01.

1One writes f ≍ g, if f = O(g) and g = O(f). One writes f = O(g), if lim supϵ→0

∣∣∣ f(ϵ)g(ϵ)

∣∣∣ < ∞.
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Problem 3 (20 points)

In this problem, you will investigate how ReLU networks are used in classification
tasks, when there are more than two classes. The usual approach is to compose the
ReLU network with a Softmax function, defined as follows.

Definition 1. Let n ∈ N. The Softmax function is defined as

Softmax(n) : Rn → Rn

x 7→ exp(x)∑n
j=1 exp(xj)

,
(1)

where exp(x) := (exp(x1), . . . , exp(xn)).

You will specifically study the Lipschitz constant of ReLU networks composed with
the Softmax function. We next define the Lipschitz constant.

Definition 2. Let f : Rd 7→ Rk. The Lipschitz constant of f is defined as

|f |Lip := sup
x,y∈[−1,1]d

x ̸=y

∥f(x)− f(y)∥∞
∥x− y∥∞

. (2)

(a) (2 points) Compute Softmax(1).

(b) (2 points) Let n ∈ N. Show that for all x ∈ Rn, and all i ∈ {1, . . . , n}, the individual
components Softmax

(n)
i (x) of the Softmax function satisfy

0 ≤ Softmax
(n)
i (x) ≤ 1. (3)

(c) (8 points) Let n ∈ N and x ∈ Rn. Show that
∥∥∥∇ Softmax(n)

∥∥∥
∞

≤ 1, where ∇ is per
Definition 5 in the Handout.

Hint: First prove that

∇ Softmax(n)(x) = diag
(
Softmax(n)(x)

)
− Softmax(n)(x) Softmax(n)(x)T , (4)

for all x ∈ Rn, where diag is defined in Definition 4 in the Handout.

(d) (4 points) Let n ∈ N, i ∈ {1, . . . , n}, and x ∈ Rn. Show that

| Softmax(n) |Lip ≤ n3/2. (5)

Hint: Use Theorem 1, and Lemmata 2 and 3 in the Handout.

(e) (4 points) Let n,m, d ∈ N, and let ϕ = W2 ◦ ρ ◦ W1 be a RELU network with
W1 : Rd → Rm, W1(x) := A1x and W2 : Rm → Rn, W2(x) := A2x, where A1 ∈ Rm×d

and A2 ∈ Rn×m. Show that∣∣∣Softmax(n) ◦ϕ
∣∣∣
Lip

≤ n3/2md∥A1∥∞∥A2∥∞, (6)

where f ◦ g stands for the concatenation of the functions f and g. Hint: Use
Lemmata 2 and 3 in the Handout, along with (5).
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Problem 4 (30 points)

In this problem, you will investigate how 2-D convolution can be used to classify im-
ages. Let us consider grayscale images, of size 5× 5 pixels, containing either a vertical
line or a horizontal line of 3 pixels, randomly positioned in the image:

These images are represented by 5× 5 matrices, with entries equal to 0 correspond-
ing to white pixels and entries equal to 1 corresponding to gray pixels. The next 4
matrices respectively represent the 4 images above.

A1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0

, A2 =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

, A3 =


0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

, A4 =


0 0 0 0 0
0 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

· (7)

We consider the set X := {A1, A2, A3, A4}, along with the dichotomy X+ := {A1, A2},
X− := {A3, A4}, which separates horizontal from vertical lines. We define the map
ϕ : R5×5 → R2 according to

ϕ(A) = (∥A ∗K1∥∞, ∥A ∗K2∥∞) , for all A ∈ R5×5, (8)

where ∗ is the convolution product as per Definition 6 in the Handout, and

K1 :=
(
1 1 1

)
, K2 :=

1
1
1

 . (9)

It can be shown that

A1 ∗K1 =


0 0 0
0 0 0
0 x1 1
0 x2 1
0 1 1

 , and A1 ∗K2 =

0 0 0 1 0
0 0 0 x3 0
0 0 0 x4 0

 , (10)

where x1, x2, x3, x4 ∈ R.

(a) (6 points) Show that x1 = x2 = 1, x3 = 2, and x4 = 3. Deduce that ϕ(A1) = (1, 3).

It can be shown that ϕ(A) = (1, 3) for all A ∈ X+, and ϕ(A) = (3, 1) for all A ∈ X−.

(b) (6 points) Is X in ϕ-general position? Is {X+, X−} ϕ-separable ? If yes, character-
ize a corresponding separating surface.
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The 0-1 MNIST dataset is a set of 1000 28 × 28 images of handwritten zeros and 1000
28× 28 images of handwritten ones, as depicted in the examples below.

These images are represented by 28 × 28 matrices with values in [0, 1] (the darkest
gray pixels correspond to a value of 1, and the white pixels correspond to a value of 0).
The set of all images is denoted by X , the set of images of handwritten zeros is denoted
by X+, and the set of images of handwritten ones is denoted by X−. We define the map
ϕ : R28×28 → R2, aiming to separate {X+, X−}, according to

ϕ(A) = (∥A ∗K1∥∞, ∥A ∗K2∥∞) , for all A ∈ R28×28, (11)

where

K1 =
1

11

(
1 · · · 1

)
∈ R1×11, K2 =

1

11

1
...
1

 ∈ R11×1. (12)

(c) (4 points) Show that ϕ(A) ∈ [0, 1]2, for all A ∈ R28×28.

In the next picture we display ϕ(A) for all A ∈ X , where the blue points are for A ∈ X+,
and the red points are for A ∈ X−.

The next two questions leave a lot of room for creativity. Any initiative will be
rewarded with points, and the full grade can be obtained without answering the ques-
tions completely.
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(d) (7 points) Explain why the red points tend to accumulate around (0, 1), and the
blue points tend to accumulate around (1, 1).

(e) (7 points) Explain why {X+, X−} is not ϕ-separable. Propose a strategy to define
another mapping ϕ : R28×28 → Rk, where k ∈ N, which, potentially, would lead
to {X+, X−} being ϕ-separable. You can freely choose the value of k. No proof
is expected, but rather creative and well-justified propositions. Drawings and
schemes are encouraged.
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Definition 1. Let n,m ∈ N, x ∈ Rn, and A ∈ Rm×n. We define

∥x∥∞ := max
i=1,...,n

|xi|, (1)

∥x∥2 :=

√√√√ n∑
i=1

x2
i , (2)

∥A∥∞ := max
i=1,...,m
j=1,...,n

|Ai,j| (3)

∥A∥1 :=
∑

i=1,...,m
j=1,...,n

|Ai,j|. (4)

Definition 2 (ReLU network). Let L ∈ N and N0, N1, . . . , NL ∈ N. A ReLU neural
network Φ is a map Φ : RN0 → RNL given by

Φ =


W1, L = 1,

W2 ◦ ρ ◦W1, L = 2,

WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1, L ≥ 3,

where, for ℓ ∈ {1, 2, . . . , L}, Wℓ : RNℓ−1 → RNℓ ,Wℓ(x) := Aℓx + bℓ are the associated
affine transformations with matrices Aℓ ∈ RNℓ×Nℓ−1 and bias vectors bℓ ∈ RNℓ , and
the ReLU activation function ρ : R → R, ρ(x) := max{x, 0} acts component-wise, i.e.,
ρ(x1, . . . , xN) := (ρ(x1), . . . , ρ(xN)). We denote by Nd,d′ the set of all ReLU networks
with input dimension N0 = d and output dimension NL = d′. Moreover, we define the
following quantities related to the notion of size of the ReLU network Φ:

• the connectivity M(Φ) is the total number of non-zero entries in the matrices Aℓ,
ℓ ∈ {1, 2, . . . , L}, and the vectors bℓ, ℓ ∈ {1, 2, . . . , L},

• depth L(Φ) := L,

• width W(Φ) := maxℓ=0,...,L Nℓ,

• weight magnitude B(Φ) := maxℓ=1,...,L max{∥Aℓ∥∞, ∥bℓ∥∞}.

Lemma 1. Let (X , ρ) be a metric space and C a compact set in X . For all ϵ > 0, the
packing and covering number are related according to

M(2ϵ; C, ρ) ≤ N(ϵ; C, ρ) ≤ M(ϵ; C, ρ).

Definition 3. Let n ∈ N and x ∈ Rn. A = diag(x) denotes the Rn×n matrix whose
entries are all equal to 0, except on the main diagonal, which is given by Ai,i = xi, for
all i ∈ {1, . . . , n}.

Lemma 2. Let n ∈ N and x ∈ Rn. Then,

∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞. (5)



Lemma 3. Let n,m ∈ N, x ∈ Rn, and A ∈ Rm×n. Then,

∥Ax∥∞ ≤ n∥A∥∞∥x∥∞. (6)

Definition 4. Let n,m ∈ N, and let f : Rn → Rm. For j ∈ {1, . . . ,m}, we define
fj : Rn → R to be the function corresponding to the j-th coordinate of f , i.e.,

f(x) =: (f1(x), . . . , fm(x)), ∀x ∈ Rn. (7)

Definition 5. Let n,m ∈ N, and let f : Rn → Rm be a differentiable function. For
j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, we define ∂jfi to be the j-th partial derivative of fi.
Further, for j ∈ {1, . . . , n}, we define ∂jf : Rn → Rm as

∂jf := (∂jf1, . . . , ∂jfm). (8)

Moreover, we define ∇f : Rn → Rm×n as

∇f :=


∂1f1 · · · ∂nf1
∂1f2 · · · ∂nf2

... . . . ...
∂1fm · · · ∂nfm

 · (9)

Theorem 1. (Generalized Multivariate Mean Value Theorem) Let n,m ∈ N, and let
f : Rn → Rm be a differentiable function. Then, for all x, y ∈ Rn, with xi < yi, for all
i ∈ {1, . . . , n}, there exists z ∈ (x1, y1)× (x2, y2)× · · · × (xn, yn) such that

∥f(y)− f(x)∥2 ≤ ∥∇f(z)(y − x)∥2. (10)

Definition 6. Let k, ℓ, n,m ∈ N be such that k < n and ℓ < m. Let A ∈ Rn×m and
B ∈ Rk×ℓ. The convolution product A ∗B ∈ R(n−k+1)×(m−ℓ+1) is defined as

(A ∗B)i,j =
∑

p∈{1,...,k}
q∈{1,...,ℓ}

Ai+p−1,j+q−1Bp,q, (11)

for all i ∈ {1, . . . , n− k + 1}, j ∈ {1, . . . ,m− ℓ+ 1}.

We here show, by way of an example, how to compute a convolution product as
defined in (11). Consider the matrices

A =


0 0 0 0
1 1 0 0
0 0 0 1
0 0 0 1

 ∈ R4×4, and B =
(
1 1

)
∈ R1×2. (12)

We want to compute A ∗ B. First, note that A ∗ B ∈ R(4−1+1)×(4−2+1) = R4×3. Now, to
compute (A ∗B)1,1, we apply (11):

(A ∗B)1,1 =
∑

p∈{1,...,1}
q∈{1,...,2}

A1+p−1,1+q−1Bp,q =
∑

q∈{1,...,2}

A1,qB1,q = A1,1B1,1 + A1,2B1,2 = 0. (13)

We continue with (A ∗B)1,2:

(A ∗B)2,1 =
∑

p∈{1,...,1}
q∈{1,...,2}

A2+p−1,1+q−1Bp,q =
∑

q∈{1,...,2}

A2,qB1,q = A2,1B1,1 + A2,2B1,2 = 2. (14)
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Continuing this procedure, we find that

A ∗B =


0 0 0
2 1 0
0 0 1
0 0 1

 · (15)

Lemma 4. Let k, ℓ, n, and m ∈ N be such that k < n and ℓ < m. Let A ∈ Rn×m and
B ∈ Rk×ℓ. Then,

∥A ∗B∥∞ ≤ ∥A∥∞∥B∥1. (16)
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