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Problem 1

(a) One possible solution is

Φ(x) = ρ(x)− ρ(x− 1)

=
(
1 −1

)
◦ ρ ◦

((
1
1

)
x+

(
0
−1

))
, x ∈ R.

This network satisfies L(Φ) = 2,W(Φ) = 2, and M(Φ) = 5.

(b) We directly calculate the function f as

f(x) =



0, for x < 0

4x, for 0 ≤ x < 1
4

−2x+ 3
2
, for 1

4
≤ x < 3

4

4x− 3, for 3
4
≤ x < 1

1, for x ≥ 1.

The sketch of f is given below.
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Figure 1: f(x).

One possible solution for Φf is

Φf (x) = 4ρ(x)− 6ρ(x− 1/4) + 6ρ(x− 3/4)− 4ρ(x− 1)

=
(
4 −6 6 −4

)
◦ ρ ◦



1
1
1
1

x+


0

−1/4
−3/4
−1


, x ∈ R,
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which satisfies L(Φf ) = 2, W(Φf ) = 4, M(Φf ) = 11, and B(Φf ) = 6.

(c) We first realize the function g as a σ-network according to

g(x, y) = (W3 ◦ σ ◦W2 ◦ σ ◦W1)(x, y), (1)

where

W1(x, y) =

(
−2 −1
0.5 −2

)(
x
y

)
+

(
1
0

)
, x, y ∈ R,

W2(x) =
(
1 1

)
x, x ∈ R2,

W3(x) = x, x ∈ R.

Based on the result from subproblem (a), namely

σ(x) = ρ(x)− ρ(x− 1),

we can convert σ in (1) to obtain a ReLU network realizing g(x, y) according to

Φg(x, y) = (W ′
3 ◦ ρ ◦W ′

2 ◦ ρ ◦W ′
1)(x, y), (2)

where

W ′
1(x, y) =


−2 −1
−2 −1
0.5 −2
0.5 −2

(
x
y

)
+


1
0
0
−1

,

W ′
2(x) =

(
1 −1 1 −1
1 −1 1 −1

)
x+

(
0
−1

)
, x ∈ R4,

W ′
3(x) =

(
1 −1

)
x, x ∈ R2.

Inspection of (2) shows that L(Φg) = 3 as desired.

(d) We can express the operation ∨ by affine copies of ρ according to

x ∨ y = max{x, y} = x+max{0, y − x} = ρ(x)− ρ(−x) + ρ(y − x), for x, y ∈ R.

One possible solution for Φ∨ is hence

Φ∨(x, y) =
(
1 −1 1

)
◦ ρ ◦

 1 0
−1 0
−1 1

(
x
y

), x, y ∈ R.

Likewise, for the operation ∧, we have

x ∧ y = min{x, y} = x−max{0, x− y} = ρ(x)− ρ(−x)− ρ(x− y), for x, y ∈ R.

So we can choose Φ∧ according to

Φ∧(x, y) =
(
1 −1 −1

)
◦ ρ ◦

 1 0
−1 0
1 −1

(
x
y

), x, y ∈ R.
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(e) In (d), the ”min” operation can be realized according to

min{x, y} = (W2 ◦ ρ ◦W1)(x, y),

where

W1(x, y) =

 1 0
−1 0
1 −1

(
x
y

)
, x, y ∈ R,

W2(x) =
(
1 −1 −1

)
x, x ∈ R3.

Using z = ρ(z)− ρ(−z), for z ∈ R, the ReLU network W4 ◦ ρ ◦W3 with

W3(x, y, z) =


1 0 0
−1 0 0
1 −1 0
0 0 1
0 0 −1


x
y
z

, x, y, z ∈ R,

W4(x) =

(
1 −1 −1 0 0
0 0 0 1 −1

)
x, x ∈ R5.

satisfies

(W4 ◦ ρ ◦W3)(x, y, z) =

(
min{x, y}

z

)
, x, y, z ∈ R.

Let Φh := W2 ◦ ρ ◦ W1 ◦ W4 ◦ ρ ◦ W3. Then Φh(x, y, z) = min{min{x, y}, z} =
min{x, y, z} as required.

3



Problem 2

(a) An ϵ-covering of F with respect to the metric ρ∞ is a set {x1, . . . , xN} ⊂ F such
that for each x ∈ F , there exists an i ∈ {1, . . . , N} so that ρ∞(x, xi) ≤ ϵ. The
ϵ-covering number N(ϵ;F , ρ∞) is the cardinality of a smallest ϵ-covering of F .

(b) For all θ, θ′ ∈ [0, 1], we have

ρ∞(fθ,θ′ , f0,0) = sup
x∈[0,1]

|fθ,θ′(x)−f0,0(x)| = max
x∈[0,1]

|1−e−θx+θ′| = max
x∈[0,1]

(1−e−θx+θ′) ≤ 2.

Therefore, for ϵ ≥ 2, the ϵ-ball around f0,0 contains all elements in F . The single-
ton set {f0,0} constitutes an ϵ-covering of F , which establishes

N(ϵ;F , ρ∞) = 1, for ϵ ≥ 2.

(c) For given ϵ < 2, for every fθ,θ′ ∈ F , we can find (θi, θ
′
j) in the set {(θi, θ′j) : i, j =

0, 1, . . . , T + 1}, such that |θi − θ| ≤ ϵ/2 and |θ′j − θ′| ≤ ϵ/2. We then have

ρ(fθ,θ′ − fθi,θ′j) = sup
x∈[0,1]

|fθ,θ′(x)− fθi,θ′j(x)|

= max
x∈[0,1]

| − e−θx + e−θix + θ′ − θ′j|

≤ |θ′ − θ′j|+ max
x∈[0,1]

|e−θx − e−θix|

≤ |θ′ − θ′j|+ |θi − θ| ≤ ϵ,

where we used, for θ < θi,

max
x∈[0,1]

|e−θx − e−θix| = max
x∈[0,1]

e−θx|1− e−(θi−θ)x|

≤ max
x∈[0,1]

(1− e−(θi−θ)x)

≤ max
x∈[0,1]

(θi − θ)x

= |θi − θ|.

The case θ > θi follows similarly. We conclude that the set {fθi,θ′j : i, j = 0, . . . , T +

1} constitutes an ϵ-covering of F . An upper bound on the covering number is
hence given by N(ε;F , ρ∞) ≤ (T + 2)2 ≤ (1

ϵ
+ 2)2.

(d) We construct an ϵ-packing as follows. Set θ0 = 0 and define θi = − log(1−ϵi) for all
i such that θi ≤ 1. The largest index T so that this holds is given by T =

⌊
1−e−1

ϵ

⌋
.

For j = 0, 1, . . . ,
⌊
1
ϵ

⌋
, let θ′j = jϵ. Note that for any two distinct points (θi, θ

′
j) and

(θm, θ
′
n), if j ̸= n, we have

ρ(fθi,θ′j , fθm,θ′n) = max
x∈[0,1]

|fθi,θ′j(x)− fθm,θ′n(x)| ≥ |fθi,θ′j(0)− fθm,θ′n(0)| = |θ′j − θ′n| ≥ ϵ,

and if j = n, then i ̸= m, and we have

ρ(fθi,θ′j , fθm,θ′n) = max
x∈[0,1]

|fθi,θ′j(x)− fθm,θ′n(x)| ≥ |fθi,θ′j(1)− fθm,θ′n(1)| = |ϵ(i−m)| ≥ ϵ.

We can therefore conclude that the set {fθi,θ′j : i = 0, . . . , T, j = 0, . . . ,
⌊
1
ϵ

⌋
} is an ϵ-

packing and the packing number satisfies M(ε;F , ρ∞) ≥ (T +1)(1+
⌊
1
ϵ

⌋
) ≥ 1−e−1

ϵ2
.

4



(e) By subproblems (c) and (d) and Lemma 1 in the Handout, we obtain

1− e−1

(2ϵ)2
≤ M(2ε;F , ρ∞) ≤ N(ε;F , ρ∞) ≤

(
1

ϵ
+ 2

)2

,

which allows us to conclude that logN(ε;F , ρ∞) ≍ log(1/ϵ) as ϵ → 0.
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Problem 3
(a)

Softmax(1)(x) =
exp(x)

exp(x)
= 1, (3)

for all x ∈ R.

(b) Fix x ∈ Rn and i ∈ {1, . . . , n}. For all t ∈ R, exp(t) ≥ 0, so

Softmax
(n)
i (x) =

exp(xi)∑n
k=1 exp (xk)

≥ 0. (4)

Moreover,

Softmax
(n)
i (x) =

exp(xi)∑n
k=1 exp (xk)

≤ exp(xi)

exp (xi)
≤ 1. (5)

(c) Let n ∈ N, i, j ∈ {1, . . . , n}, and x ∈ Rn. Suppose that i ̸= j.

∂j Softmax
(n)
i (x) = ∂j

(
exp(xi)∑n

k=1 exp (xk)

)
(6)

= −exp(xi)∂j (
∑n

k=1 exp (xk))

(
∑n

k=1 exp (xk))
2 (7)

= − exp(xi) exp(xj)

(
∑n

k=1 exp (xk))
2 (8)

= − Softmax
(n)
i (x) Softmax

(n)
j (x). (9)

∂i Softmax
(n)
i (x)i = ∂i

(
exp(xi)∑n

k=1 exp (xk)

)
(10)

=
(
∑n

k=1 exp (xk)) ∂i(exp(xi))− exp(xi)∂i (
∑n

k=1 exp (xk))

(
∑n

k=1 exp (xk))
2 (11)

=
(
∑n

k=1 exp (xk)) exp(xi)− exp(xi)
2

(
∑n

k=1 exp (xk))
2 (12)

=
exp(xi)∑n

k=1 exp (xk)
− exp(xi)

2

(
∑n

k=1 exp (xk))
2 (13)

= Softmax
(n)
i (x)− Softmax

(n)
i (x) Softmax

(n)
i (x). (14)

Combining (14) for each i ∈ {1, . . . , n}, we obtain the result in the hint, namely

∇ Softmax(n)(x) = diag
(
Softmax(n)(x)

)
− Softmax(n)(x) Softmax(n)(x)T . (15)

By subproblem b), one has 0 ≤ Softmax
(n)
i (x) ≤ 1, for all x ∈ Rn, i ∈ {1, . . . , n}. It

follows that −1 ≤ ∇ Softmax
(n)
i,j (x) ≤ 1, for all x ∈ Rn, i, j ∈ {1, . . . , n}. Therefore,

∥∇ Softmax(n)(x)∥∞ ≤ 1, for all x ∈ Rn, as desired.

(d) Let n ∈ N and x, y ∈ Rn, x ̸= y. By Theorem 1 in the Handout, there exists z ∈ Rn

such that

∥ Softmax(n)(y)− Softmax(n)(x)∥2 ≤ ∥∇ Softmax(n)(z)(y − x)∥2. (16)
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If follows that

∥ Softmax(n)(y)− Softmax(n)(x)∥∞
(a)

≤ ∥ Softmax(n)(y)− Softmax(n)(x)∥2 (17)
(16)

≤ ∥∇ Softmax(n)(z)(y − x)∥2 (18)
(b)

≤
√
n∥∇ Softmax(n)(z)(y − x)∥∞ (19)

(c)

≤
√
n n ∥∇ Softmax(n)(z)∥∞∥y − x∥∞ (20)

(d)

≤ n3/2∥(y − x)∥∞, (21)

where (a) and (b) follow from Lemma 2 in the Handout, (c) is by Lemma 3 in the
Handout, and (d) is by subproblem (c). We conclude that

| Softmax(n) |Lip := sup
x,y∈[−1,1]d

x ̸=y

∥ Softmax(n)(x)− Softmax(n)(y)∥∞
∥x− y∥∞

≤ n3/2. (22)

(e) Let x, y ∈ [−1, 1]d.

∥ϕ(x)− ϕ(y)∥∞ = ∥ Softmax(n)(A2ρ(A1x))− Softmax(n)(A2ρ(A1y))∥∞ (23)
(a)

≤ n3/2∥A2ρ(A1x)− A2ρ(A1y)∥∞ (24)
(b)

≤ n3/2m∥A2∥∞∥ρ(A1x)− ρ(A1y)∥∞ (25)
(c)

≤ n3/2m∥A2∥∞∥A1x− A1y∥∞ (26)
(d)

≤ n3/2md∥A2∥∞∥A1∥∞∥x− y∥∞, (27)

where (a) is by subproblem (d), (b) follows from Lemma 3 in the Handout, (c)
is a consequence of the ReLU function being 1-Lipschitz, and (d) follows from
Lemma 3 in the Handout. In summary, we have established that

|ϕ|Lip ≤ n3/2md∥A2∥∞∥A1∥∞. (28)
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Problem 4

(a) We use Definition 6 in the Handout to compute x1, x2, x3, and x4 as follows:

x1 = (A1 ∗K1)3,2 =
∑

p∈{1,...,1}
q∈{1,...,3}

[A1]3+p−1,2+q−1[K1]p,q =
∑

q∈{1,...,3}

[A1]3,1+q[K1]1,q (29)

= [A1]3,2[K1]1,1 + [A1]3,3[K1]1,2 + [A1]3,4[K1]1,3 = 1. (30)

x2 = (A1 ∗K1)4,2 =
∑

p∈{1,...,1}
q∈{1,...,3}

[A1]4+p−1,2+q−1[K1]p,q =
∑

q∈{1,...,3}

[A1]4,1+q[K1]1,q (31)

= [A1]4,2[K1]1,1 + [A1]4,3[K1]1,2 + [A1]4,4[K1]1,3 = 1. (32)

x3 = (A1 ∗K2)2,4 =
∑

p∈{1,...,3}
q∈{1,...,1}

[A1]2+p−1,4+q−1[K2]p,q =
∑

p∈{1,...,3}

[A1]1+p,4[K2]p,1 (33)

= [A1]2,4[K2]1,1 + [A1]3,4[K2]2,1 + [A1]4,4[K2]3,1 = 2. (34)

x4 = (A1 ∗K2)3,4 =
∑

p∈{1,...,3}
q∈{1,...,1}

[A1]3+p−1,4+q−1[K2]p,q =
∑

p∈{1,...,3}

[A1]2+p,4[K2]p,1 (35)

= [A1]3,4[K2]1,1 + [A1]4,4[K2]2,1 + [A1]5,4[K2]3,1 = 3. (36)

We deduce that

∥A1 ∗K1∥∞ = 1, ∥A1 ∗K2∥∞ = 3. (37)

It follows that

ϕ(A1) = (∥A1 ∗K1∥∞, ∥A1 ∗K2∥∞) = (1, 3). (38)

(b) As ϕ(A1) = ϕ(A2), X is not in ϕ-general position. {X+, X−} is ϕ-separable. In-
deed, consider w = (−1, 1). Then,

⟨ϕ(A1), w⟩ = ⟨ϕ(A2), w⟩ = 2, (39)

and

⟨ϕ(A3), w⟩ = ⟨ϕ(A4), w⟩ = −2. (40)

(c) ∥K1∥1 = ∥K2∥1 = 1
11

∑11
i=1 1 = 1. By Lemma 4 in the Handout, for all A ∈

[0, 1]28×28, ∥A ∗ K1∥∞ ≤ ∥A∥∞∥K1∥1 ≤ ∥A∥∞ and ∥A ∗ K2∥∞ ≤ ∥A∥∞∥K2∥1 ≤
∥A∥∞. As A ∈ [0, 1]28×28, it follows that ϕ(A) ∈ [0, 1]2, for all A ∈ X .

(d) In subproblem (a), we have seen that convolution with a matrix of ones lined up
horizontally tends to produce maximal values if the image contains a horizontal
line, and conversely, convolution with a matrix of ones lined up vertically tends
to produce maximal values if the image contains a vertical line.

The red points represent the value of ϕ(A) for A ∈ X−. X− contains images of
handwritten ones, which are approximately vertical lines. Hence, for A ∈ X−,
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A ∗ K1 yields small values (close to 0) while A ∗ K2 yields higher values (close
to 1), and therefore ∥A ∗ K1∥∞ ≃ 0 while ∥A ∗ K2∥∞ ≃ 1. This explains why
ϕ(A) ≃ (0, 1) for A ∈ X−.

The blue points represent the value of ϕ(A) for A ∈ X+. X+ contains images
of handwritten zeros, which are approximately a combination of horizontal and
vertical lines. Hence, for A ∈ X+, both A ∗K1 and A ∗K2 yield high values (close
to 1), and therefore ∥A ∗K1∥∞ ≃ ∥A ∗K2∥∞ ≃ 1. This explains why ϕ(A) ≃ (1, 1)
for A ∈ X+.

(e) The distribution of blue and red points clearly overlap, so it is not possible to
separate {ϕ(X+), ϕ(X−)} with a line. Therefore, X is not ϕ-separable. We can
design a map ϕ′ which could lead to better separation properties as follows. ϕ
is designed to “spot” the horizontal and vertical lines on images, through the
convolution with K1 and K2. However, handwritten zeros and ones are not com-
posed of horizontal and vertical lines: ones are not perfectly vertical, but rather
deviate a little bit to the right, and zeros have many components, such as curved
lines and edges. A strategy to get a better separation would be to add more coor-
dinates to the output of ϕ to detect more diverse features. For example, one can
choose ϕ′ : R28×28 → R12, according to

ϕ′(A) = (A ∗Ki)i∈{1,...,12}, ∀A ∈ R28×28, (41)

where the Ki are matrices. The first two coordinates would remain the same, but
the next ones would use convolutions with other matrices, with the purpose of
detecting inclined lines, curved lines and edges. Here is an example of the Ki, for
i = 3, . . . , 12:

K3 =


0 1
0 1
1 0
1 0

 , K4 =

0 0 1
0 1 0
1 0 0

 , (42)

are designed to detect inclined lines,

K5 =


0 1
1 0
1 0
1 0
0 1

 , K6 =


1 0
0 1
0 1
0 1
1 0

 , K7 =

(
1 0 0 0 1
0 1 1 1 0

)
, K8 =

(
0 1 1 1 0
1 0 0 0 1

)

are designed to detect curved lines, and

K9 =

(
1 1
1 0

)
, K10 =

(
1 1
0 1

)
, K11 =

(
1 0
1 1

)
, K12 =

(
0 1
1 1

)
(43)

are designed to detect edges.
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