

Lösung zur

Klausur zu Signal- und Systemtheorie I 27. August 2021

1. Aufgabe

(a) i. Wir bemerken zunächst, dass gemäss Gleichung 27 der Formelsammlung die Fouriertransformation von

$$w(t) := \frac{\sin(10\pi t)}{7\pi t}$$

gegeben ist durch

$$\widehat{w}(f) = \begin{cases} 1/7, & |f| \le 5 \\ 0, & \text{sonst.} \end{cases}$$

Aus Gleichung 7 der Formelsammlung folgt daher

$$\hat{x}_1(f) = \begin{cases} \frac{\hat{x}(f)}{7}, & |f| \le \min(5, f_0) \\ 0, & \text{sonst.} \end{cases}$$

Die Bandbreite von $x_1(t)$ ist daher gegeben durch $min(5, f_0)$.

ii. Wir setzen

$$w(t) := x_2(2t) = \int_{-\infty}^t x(\tau)d\tau.$$

Gemäss Gleichung 15 der Formelsammlung erhalten wir

$$\widehat{w}(f) = \frac{1}{2\pi i f} \, \widehat{x}(f) + \frac{1}{2} \, \widehat{x}(0) \, \delta(f),$$

so dass die Bandbreite von w(t) gleich f_0 ist. Des Weiteren folgt aus Gleichung 6 der Formelsammlung, dass

$$\widehat{w}(f) = \frac{1}{2}\,\widehat{x}_2\bigg(\frac{f}{2}\bigg),$$

und daher $\hat{x}_2(f)=2\widehat{w}(2f)$. Die Bandbreite von $x_2(t)$ ergibt sich somit zu $\frac{f_0}{2}$.

iii. Aus den Gleichungen 8 und 18 der Formelsammlung folgt

$$\hat{x}_3(f) = \frac{1}{2} \left(\hat{x}(f + 2f_0) + \hat{x}(f - 2f_0) \right).$$

Die Bandbreite von $\hat{x}_3(t)$ ist daher gleich $3f_0$.

(b) i. Beachten Sie, dass

$$\hat{h}(f) = \frac{3 - 2\pi i f}{2 + 2\pi i f} = \frac{-2 - 2\pi i f}{2 + 2\pi i f} + \frac{5}{2 + 2\pi i f} = -1 + \frac{5}{2 + 2\pi i f}.$$

Gemäss Gleichungen 16 und 24 der Formelsammlung ist daher

$$h(t) = -\delta(t) + 5e^{-2t}\sigma(t).$$

ii. Beachten Sie, dass gemäss Gleichung 24 der Formelsammlung

$$\hat{x}(f) = \frac{1}{2 + 2\pi i f},$$

und daher

$$\hat{y}(f) = \hat{h}(f)\,\hat{x}(f) = \frac{-1}{2 + 2\pi i f} + \frac{5}{(2 + 2\pi i f)^2}.$$

Aus den Gleichungen 24 und 25 der Formelsammlung folgt daher

$$y(t) = 5te^{-2t}\sigma(t) - e^{-2t}\sigma(t).$$

iii. Für die Impulsantwort

$$h(t) = -\delta(t) + 5e^{-2t}\sigma(t),$$

gilt $h(t) = 0, \forall t < 0$. Das System ist daher kausal.

iv. Da die Impulsantwort absolut integrierbar ist gemäss

$$\int_{-\infty}^{\infty} |g(t)|dt = \int_{-\infty}^{\infty} |h(t) + \delta(t)|dt = \int_{0}^{\infty} 5e^{-2t}dt = 5/2,$$

ist das System BIBO-stabil.

2. Aufgabe

(a) Aus Gleichung 73 der Formelsammlung folgt

$$\hat{h}(\theta) = \frac{1}{1 - e^{-a^2} e^{-2\pi i \theta}}.$$

(b) Für a = 0 erhalten wir die Eingangs-Ausgangsbeziehung

$$y[n] = \sum_{k=0}^{\infty} x[n-k].$$

Daraus folgt nun, dass das System auf das Eingangssignal $x[n]=1, \forall n\geq 0$, mit $y[n]=n+1, n\geq 0$, antwortet. Daher führt ein beschränktes Eingangssignal zu einem unbeschränkten Ausgangssignal, was impliziert, dass das System für a=0 nicht BIBO-stabil ist. Für $a\neq 0$, gilt

$$\sum_{n=-\infty}^{\infty} |h[n]| = \sum_{n=0}^{\infty} e^{-a^2 n} < \infty,$$

und damit ist das System für alle $a \in \mathbb{R}, a \neq 0$, BIBO-stabil.

(c) Die Eingangs-Ausgangsbeziehung des Systems ist gegeben durch

$$y[n] = h[n] * x[n] = \sum_{k=0}^{\infty} e^{-a^2k} x[n-k].$$

Daraus folgt, dass das Ausgangssignal des Systems zum Zeitpunkt n_0 von $x[n_0]$ sowie von Werten von x[n] für $n < n_0$ abhängt. Das System ist damit für alle $a \in \mathbb{R}$ gedächtnisbehaftet.

(d) Für alle $a \in \mathbb{R}$ gilt h[n] = 0, für alle n < 0. Daraus folgt, dass das System für alle $a \in \mathbb{R}$ kausal ist.

(e)
$$M M$$

$$\hat{g}(\theta) = \sum_{n=0}^{M} e^{-a^2 n} e^{-2\pi i n \theta} = \sum_{n=0}^{M} e^{-(a^2 + 2\pi i \theta)n} = \frac{1 - e^{-(a^2 + 2\pi i \theta)(M+1)}}{1 - e^{-(a^2 + 2\pi i \theta)}}$$

(f)
$$y[n] = g[n] * x[n] = \sum_{k=0}^{M} e^{-a^2 k} x[n-k] = \sum_{k=0}^{M} e^{-a^2 k} = \frac{1 - e^{-a^2(M+1)}}{1 - e^{-a^2}}.$$

3

(g) Beachten Sie, dass

$$\sum_{n=-\infty}^{\infty} |g[n]| = \sum_{n=0}^{M} e^{-a^2 n} < \infty, \ \forall a \in \mathbb{R}.$$

Somit ist das System für alle $a \in \mathbb{R}$ BIBO-stabil.

3. Aufgabe

(a) Nehmen wir an, dass $\hat{x}[k] = \hat{y}[k]$, für alle k = 0, 1, ..., N - 1. Damit folgt

$$\mathbf{F}_N\mathbf{x} = \mathbf{F}_N\mathbf{y},$$

wobei \mathbf{F}_N die $N \times N$ DFT-Matrix ist und $\mathbf{x} = [x[0] \ x[1] \dots x[N-1]]^T$, $\mathbf{y} = [y[0] \ y[1] \dots y[N-1]]^T$. Daraus würde folgen

$$\hat{\mathbf{x}} - \hat{\mathbf{y}} = \mathbf{F}_N(\mathbf{x} - \mathbf{y}) = \mathbf{0}. \tag{1}$$

Damit (1) für $\mathbf{x} \neq \mathbf{y}$ erfüllt sein kann, müsste das Signal $\mathbf{z} = \mathbf{x} - \mathbf{y} \neq \mathbf{0}$ im Nullraum $\mathcal{N}^{(\mathbf{F}_N)}$ der Matrix \mathbf{F}_N liegen. Da \mathbf{F}_N aber eine unitäre Matrix ist, gilt $\mathcal{N}^{(\mathbf{F}_N)} = \{\mathbf{0}\}$. Somit kann (1) nur für $\mathbf{x} = \mathbf{y}$ gelten und daher haben wir

$$\mathbf{x} \neq \mathbf{y} \Rightarrow \hat{\mathbf{x}} \neq \hat{\mathbf{y}}.$$

(b) Aus Gleichung 80 der Formelsammlung folgt

$$\hat{x}[k] = \hat{x}^*[k] \Rightarrow x[n] = x^*[-n].$$

Für N = 11 bedeutet dies (dank der N-Periodizität von x[n])

$$x[n] = x^*[11 - n], \text{ für } n = 0, 1, \dots, 10.$$

Wir wenden diese allgemeine Bedingung nun auf $x_1[n], x_2[n], x_3[n]$ an. Für $x_1[n]$ gilt

$$x_1[4] = 0 \neq x_1^*[7] = 2,$$

und damit ist $\hat{x}_1[k]$ komplexwertig.

Für $x_2[n]$ erhalten wir

$$x_2[0] = x_2^*[11] = x_2^*[0] = 2,$$

 $x_2[1] = x_2^*[10] = 2,$
 $x_2[2] = x_2^*[9] = 3,$
 $x_2[3] = x_2^*[8] = 1,$
 $x_2[4] = x_2^*[7] = 1,$
 $x_2[5] = x_2^*[6] = 0,$

und damit ist $\hat{x}_2[k]$ reellwertig.

Für $x_3[n]$ ergibt sich

$$x_3[1] = 2 \neq x_3^*[10] = 5,$$

und damit ist $\hat{x}_3[k]$ komplexwertig.

(c)

$$\hat{y}_1[k] = \sum_{n=0}^{3} y_1[n]e^{-2\pi ikn/4} = 2 + (-1)^k, \ k = 0, 1, 2, 3,$$

d.h.

$$\hat{y}_1 = [3, 1, 3, 1].$$

Für $y_2[n]$ beachten wir, dass $y_2[n] = y_1[n-1]$, wobei die Verschiebung $y_1[n-1]$ zyklisch ist, d.h. unter Berücksichtigung der Periodizität des Signals $y_1[n]$ stattfindet. Damit folgt aus Gleichung 77 der Formelsammlung

$$\hat{y}_2[k] = e^{-2\pi i k/4} \, \hat{y}_1[k],$$

d.h.

$$\hat{y}_2 = [3, -i, -3, i].$$

Für $y_3[n]$ erkennen wir, dass $y_3[n]=e^{2\pi i n/4}y_1[n]$. Damit folgt aus Gleichung 78 der Formelsammlung

$$\hat{y}_3[k] = \hat{y}_1[k-1],$$

wobei die Verschiebung $\hat{y}_1[k-1]$ wieder zyklisch ist. Somit erhalten wir $\hat{y}_3 = [1, 3, 1, 3]$.

(d)

$$x[n] = 2\left(1 - \sin^2\left(\frac{\pi}{2}n\right)\right) = 2\cos^2\left(\frac{\pi}{2}n\right) = 1 + \cos(\pi n),$$

wobei wir

$$\cos^2(x) = \frac{1 + \cos(2x)}{2},$$

verwendet haben. Anwendung der Gleichungen 87 und 88 der Formelsammlung ergibt nun

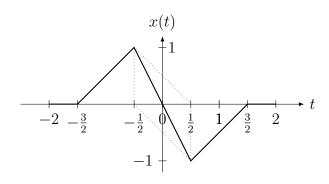
$$\hat{x}[k] = 8\,\delta[k] + 4\,\delta[k-4] + 4\,\delta[k-4] = 8\,\delta[k] + 8\,\delta[k-4],$$

d.h.

$$\hat{x} = [8, 0, 0, 0, 8, 0, 0, 0].$$

4. Aufgabe

(a) Für $t \in [-2, 2]$ hat x(t) folgende Gestalt:



(b) Wir schreiben x(t) = u(t + 1/2) - u(t - 1/2) mit

$$u(t) = \begin{cases} 1 - |t|, & |t| \le 1\\ 0, & |t| > 1. \end{cases}$$

Es bezeichne nun $\hat{u}(f)$ die Fouriertransformierte des Signals u(t). Mit Hilfe von Gleichung 29 der Formelsammlung erhalten wir für $T_0=1$

$$\hat{u}(f) = \frac{\sin^2(\pi f)}{\pi^2 f^2}.$$

Unter Zuhilfenahme der Linearität der Fouriertransformation und Gleichung 2 der Formelsammlung für $t_0 = -1/2$ und $t_0 = 1/2$ erhalten wir schliesslich

$$\hat{x}(f) = e^{\pi i f} \hat{u}(f) - e^{-\pi i f} \hat{u}(f)$$
$$= \frac{2i \sin^3(\pi f)}{\pi^2 f^2}.$$

(c) Zunächst schreiben wir $\hat{x}_a(f)$ in der Form

$$\hat{x}_a(f) = \hat{x}(f)\hat{w}(f)$$

mit

$$\hat{w}(f) = \sum_{k=-\infty}^{\infty} \delta(f - kF_0).$$

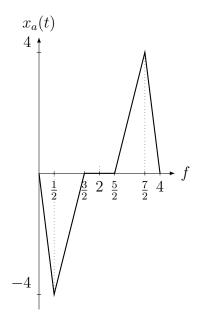
Die inverse Fouriertransformierte w(t) von $\hat{w}(f)$ ergibt sich gemäss Gleichung 20 der Formelsammlung für $T_0=1/F_0$ als

$$w(t) = \frac{1}{F_0} \sum_{k=-\infty}^{\infty} \delta\left(t - \frac{k}{F_0}\right).$$

Somit folgt durch Anwendung von Gleichung 7 der Formelsammlung

$$x_a(t) = (x * w)(t) = \frac{1}{F_0} \sum_{k=-\infty}^{\infty} x \left(t - \frac{k}{F_0}\right).$$
 (2)

(d) Für $F_0 = 1/4$ und $0 \le t \le 4$ hat $x_a(t)$ folgende Gestalt:



(e) Es sei g(t) die inverse Fouriertransformierte von $\hat{g}(f)$. Mit Hilfe von Gleichung 28 der Formelsammlung erhalten wir

$$g(t) = \begin{cases} C_0, & |t| \le T_0 \\ 0, & |t| > T_0. \end{cases}$$

Gleichung 8 aus der Formelsammlung ergibt nun $y(t) = g(t) x_a(t)$. Folglich erhalten wir

$$y(t) = \begin{cases} C_0 x_a(t), & |t| \le T_0 \\ 0, & |t| > T_0. \end{cases}$$

(f) Wir brauchen $F_0 \leq 1/3$ (damit keine Überlappungen im Signal $x_a(t)$ auftreten) und $C_0 = F_0$ (um den Faktor $1/F_0$ in (2) zu kompensieren). Die Wahl $3/2 \leq T_0 \leq 1/F_0 - 3/2$ garantiert schliesslich, dass y(t) nur "eine" Kopie von x(t) enthält und somit y(t) = x(t), für alle $t \in \mathbb{R}$, und damit $\hat{y}(f) = \hat{x}(f)$, für alle $f \in \mathbb{R}$, gilt.

7