Deep neural network approximation theory


Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei


IEEE Transactions on Information Theory, invited feature paper, 2021, to appear.

[BibTeX, LaTeX, and HTML Reference]


This paper develops fundamental limits of deep neural network learning by characterizing what is possible if no constraints are imposed on the learning algorithm and on the amount of training data. Concretely, we consider Kolmogorov-optimal approximation through deep neural networks with the guiding theme being a relation between the complexity of the function (class) to be approximated and the complexity of the approximating network in terms of connectivity and memory requirements for storing the network topology and the associated quantized weights. The theory we develop establishes that deep networks are Kolmogorov-optimal approximants for markedly different function classes, such as unit balls in Besov spaces and modulation spaces. In addition, deep networks provide exponential approximation accuracy—i.e., the approximation error decays exponentially in the number of nonzero weights in the network—of the multiplication operation, polynomials, sinusoidal functions, and certain smooth functions. Moreover, this holds true even for one-dimensional oscillatory textures and the Weierstrass function—a fractal function, neither of which has previously known methods achieving exponential approximation accuracy. We also show that in the approximation of sufficiently smooth functions finite-width deep networks require strictly smaller connectivity than finite-depth wide networks.


Deep learning, neural networks, approximation theory, Kolmogorov-Donoho rate-distortion theory

Download this document:


Copyright Notice: © 2021 D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.